triclosan resistance
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 3)

2020 ◽  
Author(s):  
Lewis Hughes ◽  
Wayne Roberts ◽  
Donna Johnson

Background. DNA adenine methyltransferase (dam) has been well documented for its role in regulation of replication, mismatch repair and transposition. Recent studies have also suggested a role for dam in protection against antibiotic stress, although this is not yet fully defined. We therefore evaluated the role of dam in the development of antibiotic resistance and triclosan-associated cross-resistance. Results. A significant impact on growth rate was seen in the dam knockout compared to the parental strain. Known triclosan resistance-associated mutations in fabI were seen regardless of dam status, with an additional mutation in lrhA seen in the dam knockout. The expression of multiple antibiotic resistance-associated genes was significantly different between the parent and dam knockout post-resistance induction. Reversion rate assays showed that resistance mechanisms were stable. Conclusions. dam knockout had a significant effect on growth, but its role in the development of antibiotic resistance is likely confined to those antibiotics using acrAD-containing efflux pumps.


Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background The widespread application of triclosan contributes to its residual deposition in urine, which provides an environment of long-term exposure to triclosan for the intestinal Escherichia coli. We determined the triclosan and antibiotic resistance characteristics of E. coli strains isolated from urine samples and further investigated the resistance mechanism and molecular epidemic characteristics of triclosan-resistant E. coli isolates. Methods A total of 200 non-repetitive E. coli strains were isolated from urine samples and then identified. The minimum inhibitory concentrations (MICs) of triclosan and antibiotics, fabI mutation, efflux pump activity, the expression of 14 efflux pump encoding genes, and epidemiological characteristics were determined by the agar dilution method, polymerase chain reaction (PCR), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibition test, quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing (MLST), and pulse-field gel electrophoresis (PFGE) for all triclosan-resistant isolates. Furthermore, we also investigated the effect of triclosan exposure in vitro on antibiotic susceptibility and the efflux pump encoding gene expressions of triclosan-susceptible strains via serial passage experiments. Results Of the 200 E. coli isolates, 2.5% (n = 5) were found to be resistant to triclosan, and multidrug resistance (MDR) and cross-resistance phenotypes were noted for these triclosan-resistant strains. The triclosan-sensitive strains also exhibited MDR phenotypes, probably because of the high resistance rate to AMP, CIP, LVX, and GEN. Gly79Ala and Ala69Thr amino acid changes were observed in the triclosan-resistant strains, but these changes may not mediate resistance of E. coli to triclosan, because mutations of these two amino acids has also been detected in triclosan-susceptible strains. Moreover, except for DC8603, all other strains enhanced the efflux pumps activity. As compared with ATCC 25922, except for fabI, increased expressions were noted for all efflux pump encoding genes such as ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD, and mdfA among the studied strains with varying PFGE patterns and STs types. Unexpectedly, 5 susceptible E. coli isolates showed rapidly increasing triclosan resistance after exposure to triclosan in vitro for only 12 days, while MDR or cross-resistance phenotypes and the overexpression of efflux pump genes were recorded among these triclosan-induced resistant isolates. Conclusions This is the first study to report that short-term triclosan exposure in vitro increases triclosan resistance in susceptible E. coli isolates. After acquiring resistance, these strains may present MDR or cross-resistance phenotypes. Moreover, triclosan resistance mainly involves the overexpression of fabI and efflux pumps in E. coli isolates.


2020 ◽  
Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background: The widespread application of triclosan contributes to its residual deposition in urine, which provides an environment of long-term exposure to triclosan for the intestinal Escherichia coli. We determined the triclosan and antibiotic resistance characteristics of E. coli strains isolated from urine samples and further investigated the resistance mechanism and molecular epidemic characteristics of triclosan-resistant E. coli isolates. Methods: A total of 200 non-repetitive E. coli strains were isolated from urine samples and then identified. The minimum inhibitory concentrations (MICs) of triclosan and antibiotics, fabI mutation, efflux pump activity, the expression of 14 efflux pump encoding genes, and epidemiological characteristics were determined by the agar dilution method, polymerase chain reaction (PCR), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibition test, quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing (MLST), and pulse-field gel electrophoresis (PFGE) for all triclosan-resistant isolates. Furthermore, we also investigated the effect of triclosan exposure in vitro on antibiotic susceptibility and the efflux pump encoding gene expressions of triclosan-susceptible strains via serial passage experiments. Results: Of the 200 E. coli isolates, 2.5% (n = 5) were found to be resistant to triclosan, and multidrug resistance (MDR) and cross-resistance phenotypes were noted for these triclosan-resistant strains. The triclosan-sensitive strains also exhibited MDR phenotypes, probably because of the high resistance rate to AMP, CIP, LVX, and GEN. Gly79Ala and Ala69Thr amino acid changes were observed in the triclosan-resistant strains, but these changes may not mediate resistance of E. coli to triclosan, because mutations of these two amino acids has also been detected in triclosan-susceptible strains. Moreover, except for DC8603, all other strains enhanced the efflux pumps activity. As compared with ATCC 25922, except for fabI, increased expressions were noted for all efflux pump encoding genes such as ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD, and mdfA among the studied strains with varying PFGE patterns and STs types. Unexpectedly, 5 susceptible E. coli isolates showed rapidly increasing triclosan resistance after exposure to triclosan in vitro for only 12 days, while MDR or cross-resistance phenotypes and the overexpression of efflux pump genes were recorded among these triclosan-induced resistant isolates. Conclusions: This is the first study to report that short-term triclosan exposure in vitro increases triclosan resistance in susceptible E. coli isolates. After acquiring resistance, these strains may present MDR or cross-resistance phenotypes. Moreover, triclosan resistance mainly involves the overexpression of fabI and efflux pumps in E. coli isolates.


ACS Omega ◽  
2020 ◽  
Vol 5 (36) ◽  
pp. 23175-23183
Author(s):  
Robel Demissie ◽  
Pauline Kabre ◽  
Leslie W.-M. Fung
Keyword(s):  

2020 ◽  
Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background Widespread use of triclosan has been reported to cause its residue in urine, which provides an environment of long-term exposure to triclosan for intestinal Escherichia coli. We aimed to determine the triclosan and antibiotic resistance characteristics of Escherichia coli strains isolated from urine, and further investigate the resistance mechanism and molecular epidemic characteristics of triclosan resistant Escherichia coli isolates. Methods A total of 200 non-repetitive E. coli strains from urine samples were obtained and identified. The minimum inhibitory concentrations (MICs) of triclosan and antibiotics, fabI mutation, efflux pump activity, expression of 14 efflux pump encoding genes and epidemiological characteristics were detected with agar dilution method, polymerase chain reaction (PCR), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibition test, quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing (MLST) and pulse field gel electrophoresis (PFGE) in all triclosan resistant isolates. Furthermore, we also investigated the effect of triclosan exposure in vitro on resistance in susceptible strains by serial passage experiment. Results Of 200 E. coli isolates, 2.5% (n = 5) were resistant to triclosan, multidrug resistance (MDR) and cross-resistance phenotypes were observed in these resistant strains, but not in susceptible strains. We did not observe any sense mutations within fabI gene in triclosan resistant strains. Moreover, except DC8603, all the others enhanced efflux pumps activity. Compared with ATCC 25922, except fabI, increased expression were also found in efflux pump encoding genes ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD and mdfA in studied strains with different PFGE patterns and STs types. Surprised, 5 susceptible E. coli isolates increased rapidly triclosan resistance only 4 days after exposure to subinhibitory triclosan concentration in vitro. Conclusions Our study is the first to be reported that short-term triclosan exposure in vitro increases triclosan resistance in susceptible E. coli isolates. Once strains have acquired resistance, they usually present MDR or cross-resistance phenotypes. Besides, our findings indicate that triclosan resistance were mainly involved by fabI overexpression in E. coli, and there was a close association between overexpression of efflux pumps with triclosan resistance.


2020 ◽  
Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background: Escherichia coli isolates, the most opportunistic pathogen in the gut, are responsible for the most acquired infections. Triclosan is an effective disinfectant for inhibits microorganisms, but its widespread use causes its residue in urine, resulting in long-term exposure of E. coli in the intestine to triclosan environment and increasing triclosan resistance. We aim to provide the mechanism of action of E. coli isolates against triclosan and the molecular epidemiological analysis of triclosan-resistant strains.Results: Five triclosan-resistant isolates were screened out from 200 E. coli isolates by agar dilution method by to further study, interestingly, multidrug-resistant and cross-resistance phenotypes were observed in triclosan-resistant strains, but not in susceptible strains, and all except one exhibited an inhibition of efflux pump activity by efflux pump inhibition testing. Furthermore, compared with susceptible E. coli strain ATCC 25922, except fabI, increased expression were also found in efflux pump encoding genes ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD and mdfA in studied strains which had different PFGE patterns and STs types.Conclusions: These findings indicated that triclosan resistance in E. coli were mainly involved by overexpression of fabI gene, and there was a close association between overexpression of efflux pump with reducing susceptibility to triclosan. Besides, we described cross-resistance between triclosan and antibiotics may be related to the exposure time of triclosan.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Raees Khan ◽  
Amir Zeb ◽  
Kihyuck Choi ◽  
Gihwan Lee ◽  
Keun Woo Lee ◽  
...  

Abstract Enoyl-acyl carrier protein reductase (ENR) catalyzes the last reduction step in the bacterial type II fatty acid biosynthesis cycle. ENRs include FabI, FabL, FabL2, FabK, and FabV. Previously, we reported a unique triclosan (TCL) resistant ENR homolog that was predominant in obligate intracellular pathogenic bacteria and Apicomplexa. Herein, we report the biochemical and structural basis of TCL resistance in this novel ENR. The purified protein revealed NADH-dependent ENR activity and shared similarity to prototypic FabI. Thus, this metagenome-derived ENR was designated FabI2. Unlike other prototypic bacterial ENRs with the YX6K type catalytic domain, FabI2 possessed a unique YX7K type catalytic domain. Computational modeling followed by site-directed mutagenesis revealed that mild resistance (20 µg/ml of minimum inhibitory concentration) of FabI2 to TCL was confined to the relatively less bulky side chain of A128. Substitution of A128 in FabI2 with bulky valine (V128) elevated TCL resistance. Phylogenetic analysis further suggested that the novel FabI2 and prototypical FabI evolved from a common short-chain dehydrogenase reductase family. To our best knowledge, FabI2 is the only known ENR shared by intracellular pathogenic prokaryotes, intracellular pathogenic lower eukaryotes, and a few higher eukaryotes. This suggests that the ENRs of prokaryotes and eukaryotes diverged from a common ancestral ENR of FabI2.


2019 ◽  
Author(s):  
Andrew J. Page ◽  
Sarah Bastkowski ◽  
Muhammad Yasir ◽  
A. Keith Turner ◽  
Thanh Le Viet ◽  
...  

AbstractBackgroundBacteria have evolved over billions of years to survive in a wide range of environments. Currently, there is an incomplete understanding of the genetic basis for mechanisms underpinning survival in stressful conditions, such as the presence of anti-microbials. Transposon mutagenesis has been proven to be a powerful tool to identify genes and networks which are involved in survival and fitness under a given condition by simultaneously assaying the fitness of millions of mutants, thereby relating genotype to phenotype and contributing to an understanding of bacterial cell biology. A recent refinement of this approach allows the roles of essential genes in conditional stress survival to be inferred by altering their expression. These advancements combined with the rapidly falling costs of sequencing now allows comparisons between multiple experiments to identify commonalities in stress responses to different conditions. This capacity however poses a new challenge for analysis of multiple data sets in conjunction.ResultsTo address this analysis need, we have developed ‘AlbaTraDIS’; a software application for rapid large-scale comparative analysis of TraDIS experiments that predicts the impact of transposon insertions on nearby genes. AlbaTraDIS can identify genes which are up or down regulated, or inactivated, between multiple conditions, producing a filtered list of genes for further experimental validation as well as several accompanying data visualisations. We demonstrate the utility of our new approach by applying it to identify genes used byEscherichia colito survive in a wide range of different concentrations of the biocide Triclosan. AlbaTraDIS automatically identified all well characterised Triclosan resistance genes, including the primary target,fabI. A number of new loci were also implicated in Triclosan resistance and the predicted phenotypes for a selection of these were validated experimentally and results showed high consistency with predictions.ConclusionsAlbaTraDIS provides a simple and rapid method to analyse multiple transposon mutagenesis data sets allowing this technology to be used at large scale. To our knowledge this is the only tool currently available that can perform these tasks. AlbaTraDIS is written in Python 3 and is available under the open source licence GNU GPL 3 fromhttps://github.com/quadram-institute-bioscience/albatradis.


Sign in / Sign up

Export Citation Format

Share Document