scholarly journals Variants at RNF212 and RNF212B are associated with recombination rate variation in Soay sheep (Ovis aries)

2020 ◽  
Author(s):  
Susan E. Johnston ◽  
Martin A. Stoffel ◽  
Josephine M. Pemberton

AbstractMeiotic recombination is a ubiquitous feature of sexual reproduction, ensuring proper disjunction of homologous chromosomes, and creating new combinations of alleles upon which selection can act. By identifying the genetic drivers of recombination rate variation, we can begin to understand its evolution. Here, we revisit an analysis investigating the genetic architecture of gamete autosomal crossover counts (ACC) in a wild population of Soay sheep (Ovis aries) using a much larger dataset (increasing from 3,300 to 7,235 gametes and from ∼39,000 to ∼415,000 SNPs for genome-wide association analysis). Animal models fitting genomic relatedness confirmed that ACC was heritable in both females (h2 = 0.18) and males (h2 = 0.12). Genome-wide association studies identified two regions associated with ACC variation. A region on chromosome 6 containing RNF212 explained 46% of heritable variation in female ACC, but was not associated with male ACC, confirming the previous finding. A region on chromosome 7 containing RNF212B explained 20-25% of variation in ACC in both males and females. Both RNF212 and RNF212B have been repeatedly associated with recombination rate in other mammal species. These findings confirm that moderate to large effect loci can underpin ACC variation in wild mammals, and provide a foundation for further studies on the evolution of recombination rates.

2015 ◽  
Author(s):  
Susan E. Johnston ◽  
Camillo Bérénos ◽  
Jon Slate ◽  
Josephine M. Pemberton

ABSTRACTMeiotic recombination breaks down linkage disequilibrium and forms new haplotypes, meaning thatit is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and forunderstanding the potential of a population to respond to selection. However, despite attention inmodel systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here, we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rate. Individual rates were high relative to other mammal systems, and were higher in males than in females (autosomal map lengths of 3748 cM and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes(h2 = 0.16 & 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a sub-telomeric region on chromosome 6; a genome-wide association study showed the strongest associations at the locus RNF212, with further associations observed at a nearby ~374kb region of complete linkage disequilibrium containing three additional candidate loci, CPLX1, GAK and PCGF3. A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle and humans, suggesting a common genetic architecture of recombination rate variation in mammals.AUTHOR SUMMARYRecombination offers an escape from genetic linkage by forming new combinations of alleles, increasing the potential for populations to respond to selection. Understanding the causes and consequences of individual recombination rates are important in studies of evolution and genetic improvement, yet little is known on how rates vary in natural systems. Using data from a wild population of Soay sheep, we show that individual recombination rate is heritable and differs between the sexes, with the majority of genetic variation in females explained by a genomic region containing thegenes RNF212 and CPLX1.


Sign in / Sign up

Export Citation Format

Share Document