scholarly journals Zeroth-Order Deterministic Local and Delay Pandemic Models Comparison

Author(s):  
David Bartley

Delay differential equations are set up for zeroth-order pandemic models in analogy with traditional SIR and SEIR models by specifying individual times of incubation and infectiousness prior to recovery. Independent linear delay relations in addition to a nonlinear delay differential equation are found for characterizing time-dependent compartmental populations. Asymptotic behavior allows a link between parameters of the delay and traditional models for their comparison. In analogy with transformation of the traditional equations into linear form giving populations and time in parametric form, expansion in the delay provides a simple recursive solution. Also, a soliton-like solution in terms of a logistic function can be applied for accurate approximation. Otherwise, straightforward numerical solution is effected in terms of linearized boundary conditions specifying the distribution of instigators as to their initial infection progress--in contrast to traditional models specifying only initial average infectious and exposed populations. Examples contrasting asymptotically-linked traditional and delay models are given.

2018 ◽  
Vol 28 (11) ◽  
pp. 1850133 ◽  
Author(s):  
Xiaolan Zhuang ◽  
Qi Wang ◽  
Jiechang Wen

In this paper, we study the dynamics of a nonlinear delay differential equation applied in a nonstandard finite difference method. By analyzing the numerical discrete system, we show that a sequence of Neimark–Sacker bifurcations occur at the equilibrium as the delay increases. Moreover, the existence of local Neimark–Sacker bifurcations is considered, and the direction and stability of periodic solutions bifurcating from the Neimark–Sacker bifurcation of the discrete model are determined by the Neimark–Sacker bifurcation theory of discrete system. Finally, some numerical simulations are adopted to illustrate the corresponding theoretical results.


1973 ◽  
Vol 25 (5) ◽  
pp. 1078-1089 ◽  
Author(s):  
Bhagat Singh

In this paper we study the oscillatory behavior of the even order nonlinear delay differential equation(1)where(i) denotes the order of differentiation with respect to t. The delay terms τi σi are assumed to be real-valued, continuous, non-negative, non-decreasing and bounded by a common constant M on the half line (t0, + ∞ ) for some t0 ≧ 0.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
H. A. Agwa ◽  
Ahmed M. M. Khodier ◽  
Heba A. Hassan

We use the generalized Riccati transformation and the inequality technique to establish some new oscillation criteria for the second-order nonlinear delay dynamic equation with damping on a time scaleT(r(t)g(x(t),xΔ(t)))Δ+p(t)g(x(t),xΔ(t)) + q(t)f(x(τ(t)))=0,wherer(t),p(t), andq(t)are positive right dense continuous (rd-continuous) functions onT. Our results improve and extend some results established by Zhang et al., 2011. Also, our results unify the oscillation of the second-order nonlinear delay differential equation with damping and the second-order nonlinear delay difference equation with damping. Finally, we give some examples to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document