scholarly journals Molecular details of protein condensates probed by microsecond-long atomistic simulations

Author(s):  
Wenwei Zheng ◽  
Gregory L. Dignon ◽  
Xichen Xu ◽  
Roshan M. Regy ◽  
Nicolas L. Fawzi ◽  
...  

AbstractThe formation of membraneless organelles in cells commonly occurs via liquid-liquid phase separation (LLPS), and is in many cases driven by multivalent interactions between intrinsically disordered proteins (IDPs). Molecular simulations can reveal the specific amino acid interactions driving LLPS, which is hard to obtain from experiment. Coarse-grained simulations have been used to directly observe the sequence determinants of phase separation but have limited spatial resolution, while all-atom simulations have yet to be applied to LLPS due to the challenges of large system sizes and long time scales relevant to phase separation. We present a novel multiscale computational framework by obtaining initial molecular configurations of a condensed protein-rich phase from equilibrium coarse-grained simulations, and back mapping to an all-atom representation. Using the specialized Anton 2 supercomputer, we resolve microscopic structural and dynamical details of protein condensates through microsecond-scale all-atom explicit-solvent simulations. We have studied two IDPs which phase separate in vitro: the low complexity domain of FUS and the N-terminal disordered domain of LAF-1. Using this approach, we explain the partitioning of ions between phases with low and high protein density, demonstrate that the proteins are remarkably dynamic within the condensed phase, identify the key residue-residue interaction modes stabilizing the dense phase, all while showing good agreement with experimental observations. Our approach is generally applicable to all-atom studies of other single and multi-component systems of proteins and nucleic acids involved in the formation of membraneless organelles.

2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


2014 ◽  
Vol 206 (5) ◽  
pp. 579-588 ◽  
Author(s):  
Jeffrey A. Toretsky ◽  
Peter E. Wright

The partitioning of intracellular space beyond membrane-bound organelles can be achieved with collections of proteins that are multivalent or contain low-complexity, intrinsically disordered regions. These proteins can undergo a physical phase change to form functional granules or other entities within the cytoplasm or nucleoplasm that collectively we term “assemblage.” Intrinsically disordered proteins (IDPs) play an important role in forming a subset of cellular assemblages by promoting phase separation. Recent work points to an involvement of assemblages in disease states, indicating that intrinsic disorder and phase transitions should be considered in the development of therapeutics.


Author(s):  
T. M. Perdikari ◽  
N. Jovic ◽  
G. L. Dignon ◽  
Y. C. Kim ◽  
N. L. Fawzi ◽  
...  

AbstractBiomolecules undergo liquid-liquid phase separation (LLPS) resulting in the formation of multicomponent protein-RNA membraneless organelles in cells. However, the physiological and pathological role of post translational modifications (PTMs) on the biophysics of phase behavior is only beginning to be probed. To study the effect of PTMs on LLPS in silico, we extend our transferable coarse-grained model of intrinsically disordered proteins to include phosphorylated and acetylated amino acids. Using the parameters for modified amino acids available for fixed charge atomistic forcefields, we parameterize the size and atomistic hydropathy of the coarse-grained modified amino acid beads, and hence the interactions between the modified and natural amino acids. We then elucidate how the number and position of phosphorylated and acetylated residues alter the protein’s single chain compactness and its propensity to phase separate. We show that both the number and the position of phosphorylated threonines/serines or acetylated lysines can serve as a molecular on/off switch for phase separation in the well-studied disordered regions of FUS and DDX3X, respectively. We also compare modified residues to their commonly used PTM mimics for their impact on chain properties. Importantly, we show that the model can predict and capture experimentally measured differences in the phase behavior for position-specific modifications, showing that the position of modifications can dictate phase separation. In sum, this model will be useful for studying LLPS of post-translationally modified intrinsically disordered proteins and predicting how modifications control phase behavior with position-specific resolution.Statement of SignificancePost-translational modifications are important regulators of liquid-liquid phase separation (LLPS) which drives the formation of biomolecular condensates. Theoretical methods can be used to characterize the biophysical properties of intrinsically disordered proteins (IDPs). Our recent framework for molecular simulations using a Cα-centered coarse-grained model can predict the effect of various perturbations such as mutations (Dignon et al. PloS Comput. Biol, 2018) and temperature (Dignon et al, ACS Cent. Sci., 2019) on LLPS. Here, we expand this framework to incorporate modified residues like phosphothreonine, phosphoserine and acetylysine. This model will prove useful for simulating the phase separation of post-translationally modified IDPs and predicting how position-specific modifications can control phase behavior across the large family of proteins known to be phosphorylated and acetylated.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Julian C. Shillcock ◽  
David B. Thomas ◽  
Jonathan R. Beaumont ◽  
Graeme M. Bragg ◽  
Mark L. Vousden ◽  
...  

Phospholipid membranes surround the cell and its internal organelles, and their multicomponent nature allows the formation of domains that are important in cellular signalling, the immune system, and bacterial infection. Cytoplasmic compartments are also created by the phase separation of intrinsically disordered proteins into biomolecular condensates. The ubiquity of lipid membranes and protein condensates raises the question of how three-dimensional droplets might interact with two-dimensional domains, and whether this coupling has physiological or pathological importance. Here, we explore the equilibrium morphologies of a dilute phase of a model disordered protein interacting with an ideal-mixing, two-component lipid membrane using coarse-grained molecular simulations. We find that the proteins can wet the membrane with and without domain formation, and form phase separated droplets bound to membrane domains. Results from much larger simulations performed on a novel non-von-Neumann compute architecture called POETS, which greatly accelerates their execution compared to conventional hardware, confirm the observations. Reducing the wall clock time for such simulations requires new architectures and computational techniques. We demonstrate here an inter-disciplinary approach that uses real-world biophysical questions to drive the development of new computing hardware and simulation algorithms.


2020 ◽  
Author(s):  
Roshan Mammen Regy ◽  
Gregory L. Dignon ◽  
Wenwei Zheng ◽  
Young Chan Kim ◽  
Jeetain Mittal

ABSTRACTRibonucleoprotein (RNP) granules are membraneless organelles (MLOs) which majorly consist of RNA and RNA-binding proteins and are formed via liquid-liquid phase separation (LLPS). Experimental studies investigating the drivers of LLPS have shown that intrinsically disordered proteins (IDPs) and nucleic acids like RNA play a key role in modulating protein phase separation. There is currently a dearth of modelling techniques which allow one to delve deeper into how RNA plays its role as a modulator/promoter of LLPS in cells using computational methods. Here we present a coarse-grained RNA model developed to fill this gap, which together with our recently developed HPS model for protein LLPS, allows us to capture the factors driving RNA-protein co-phase separation. We explore the capabilities of the modelling framework with the LAF-1 RGG/RNA system which has been well studied in experiments and also with the HPS model previously. Further taking advantage of the fact that the HPS model maintains sequence specificity we explore the role of charge patterning on controlling RNA incorporation into condensates. With increased charge patterning we observe formation of structured or patterned condensates which suggests the possible roles of RNA in not only shifting the phase boundaries but also introducing microscopic organization in MLOs.


2019 ◽  
Author(s):  
Antonia Statt ◽  
Helena Casademunt ◽  
Clifford P. Brangwynne ◽  
Athanassios Z. Panagiotopoulos

Phase separation of intrinsically disordered proteins is important for the formation of membraneless organelles, or biomolecular condensates, which play key roles in the regulation of biochemical processes within cells. In this work, we investigated the phase separation of different sequences of a coarse-grained model for intrinsically disordered proteins and discovered a surprisingly rich phase behavior. We studied both the fraction of total hydrophobic parts and the distribution of hydrophobic parts. Not surprisingly, sequences with larger hydrophobic fractions showed conventional liquid-liquid phase separation. The location of the critical point was systematically influenced by the terminal beads of the sequence, due to changes in interfacial composition and tension. For sequences with lower hydrophobicity, we observed not only conventional liquid-liquid phase separation, but also reentrant phase behavior, in which the liquid phase density decreases at lower temperatures. For some sequences, we observed formation of open phases consisting of aggregates, rather than a normal liquid. These aggregates had overall lower densities than the conventional liquid phases, and exhibited complex geometries with large interconnected string-like or membrane-like clusters. Our findings suggest that minor alterations in the ordering of residues may lead to large changes in the phase behavior of the protein, a fact of significant potential relevance for biology.


2019 ◽  
Author(s):  
Julian C. Shillcock ◽  
Maelick Brochut ◽  
Etienne Chénais ◽  
John H. Ipsen

ABSTRACTPhase separation of immiscible fluids is a common phenomenon in polymer chemistry, and is recognized as an important mechanism by which cells compartmentalize their biochemical reactions. Biomolecular condensates are condensed fluid droplets in cells that form by liquid-liquid phase separation of intrinsically-disordered proteins. They have a wide range of functions and are associated with chronic neurodegenerative diseases in which they become pathologically rigid. Intrinsically-disordered proteins are conformationally flexible and possess multiple, distributed binding sites for each other or for RNA. However, it remains unclear how their material properties depend on the molecular structure of the proteins. Here we use coarse-grained simulations to explore the phase behavior and structure of a model biomolecular condensate composed of semi-flexible polymers with attractive end-caps in a good solvent. Although highly simplified, the model contains the minimal molecular features that are sufficient to observe liquid-liquid phase separation of soluble polymers. The polymers condense into a porous, three-dimensional network in which their end-caps reversibly bind at junctions. The spatial separation of connected junctions scales with the polymer backbone length as a self-avoiding random walk over a wide range of concentration with a weak affinity-dependent prefactor. By contrast, the average number of polymers that meet at the junctions depends strongly on the end-cap affinity but only weakly on the polymer length. The regularity and porosity of the condensed network suggests a mechanism for cells to regulate biomolecular condensates. Interaction sites along a protein may be turned on or off to modulate the condensate’s porosity and tune the diffusion and interaction of additional proteins.


Author(s):  
Erik W. Martin ◽  
F. Emil Thomasen ◽  
Nicole M. Milkovic ◽  
Matthew J. Cuneo ◽  
Christy R. Grace ◽  
...  

AbstractLiquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (1) electrostatically mediated interactions that compact hnRNPA1 and contribute to phase separation, and (2) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.Graphical abstracthnRNPA1 phase separation is highly salt sensitive.Phase separation of the low-complexity domain (LCD) of hnRNPA1 increases with NaCl. In contrast, phase separation of full-length hnRNPA1 is saltsensitive. At low NaCl concentrations, electrostatic RRM-LCD interactions occur and can contribute positively to phase separation, but they are screened at high NaCl concentrations. The folded domains solubilize hnRNPA1 under these conditions and prevent phase separation.


Sign in / Sign up

Export Citation Format

Share Document