intracellular space
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 64)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Karoline Horgmo Jæger ◽  
Aslak Tveito

The bidomain model is considered to be the gold standard for numerical simulation of the electrophysiology of cardiac tissue. The model provides important insights into the conduction properties of the electrochemical wave traversing the cardiac muscle in every heartbeat. However, in normal resolution, the model represents the average over a large number of cardiomyocytes, and more accurate models based on representations of all individual cells have therefore been introduced in order to gain insight into the conduction properties close to the myocytes. The more accurate model considered here is referred to as the EMI model since both the extracellular space (E), the cell membrane (M) and the intracellular space (I) are explicitly represented in the model. Here, we show that the bidomain model can be derived from the cell-based EMI model and we thus reveal the close relation between the two models, and obtain an indication of the error introduced in the approximation. Also, we present numerical simulations comparing the results of the two models and thereby highlight both similarities and differences between the models. We observe that the deviations between the solutions of the models become larger for larger cell sizes. Furthermore, we observe that the bidomain model provides solutions that are very similar to the EMI model when conductive properties of the tissue are in the normal range, but large deviations are present when the resistance between cardiomyocytes is increased.


2022 ◽  
Author(s):  
Sourav Kolay ◽  
Anthony R. Vega ◽  
Dana A. Dodd ◽  
Valerie A. Perez ◽  
Omar M. Kashmer ◽  
...  

Tau assembly propagation from the extracellular to intracellular space of a cell may underlie neurodegenerative tauopathies. The first step involves tau binding to heparan sulfate proteoglycans on the cell surface, followed by macropinocytosis. Pathological tau assemblies are thought to exit the vesicular compartment as seeds for replication in the cytoplasm. Tau uptake is highly efficient, but only ~1-10% of cells that take up aggregates exhibit seeding. To investigate the basis for this observation, we used fluorescently tagged full-length (FL) tau fibrils added to native U2OS cells, and biosensor cells expressing FL tau or repeat domain fused to mClover (Clo). FL tau-Clo bound tubulin, but seeds triggered its aggregation in multiple locations simultaneously in the cytoplasm, generally independent of visible exogenous aggregates. Most exogenous tau trafficked to the lysosome, but imaging revealed a small percentage that slowly and steadily accumulated in the cytosol. Intracellular expression of Gal3-mRuby, which binds intravesicular galactosides and forms puncta upon vesicle rupture, revealed no evidence of vesicle damage following tau exposure. In fact, most seeded cells had no evidence of lysosome rupture. However, live cell imaging indicated that cells with pre-existing Gal3-positive puncta exhibited seeding at a slightly higher rate than the general population, indicating a potential role for vesicle instability as a predisposing factor. Clearance of tau seeds occurred rapidly in both vesicular and cytosolic fractions. Bafilomycin inhibited vesicular clearance, whereas MG132 inhibited cytosolic clearance. Tau seeds that enter the cell thus have at least two fates: lysosomal clearance that degrades most tau, and entry into the cytosol, where seeds replicate, and are cleared by the proteasome.


2021 ◽  
Vol 23 (1) ◽  
pp. 397
Author(s):  
Jerran Santos ◽  
Penelope V. Dalla ◽  
Bruce K. Milthorpe

Cytokines are multifunctional small proteins that have a vital influence on inflammatory states of tissues and play a role in signalling and cellular control mechanisms. Cytokine expression has primarily been viewed as a form of direct secretion of molecules through an active transportation; however, other forms of active transport such as extracellular vesicles are at play. This is particularly important in stem cells where signalling molecules are key to communication managing the levels of proliferation, migration, and differentiation into mature cells. This study investigated cytokines from intracellular content, direct cellular secretions, and extracellular vesicles from adult adipose-derived stem cells isolated from three distinct anatomical locations: abdomen, thigh, and chin. The cells were cultured investigated using live cell microscopy, cytokine assays, and bioinformatics analysis. The cytokines quantified and examined from each sample type showed a distinct difference between niche areas and sample types. The varying levels of TNF-alpha, IL-6 and IL-8 cytokines were shown to play a crucial role in signalling pathways such as MAPK, ERK1/2 and JAK-STAT in cells. On the other hand, the chemotactic cytokines IL-1rn, Eotaxin, IP-10 and MCP-1 showed the most prominent changes across extracellular vesicles with roles in noncanonical signalling. By examining the local and tangential roles of cytokines in stem cells, their roles in signalling and in regenerative mechanisms may be further understood.


2021 ◽  
Vol 12 (4) ◽  
pp. 75
Author(s):  
Iqra Fatima ◽  
Abbas Rahdar ◽  
Saman Sargazi ◽  
Mahmood Barani ◽  
Mohadeseh Hassanisaadi ◽  
...  

Breast cancer is becoming one of the main lethal carcinomas in the recent era, and its occurrence rate is increasing day by day. There are different breast cancer biomarkers, and their overexpression takes place in the metastasis of cancer cells. The most prevalent breast cancer biomarker is the human epidermal growth factor receptor2 (HER2). As this biomarker is overexpressed in malignant breast tissues, it has become the main focus in targeted therapies to fight breast cancer. There is a cascade of mechanisms involved in metastasis and cell proliferation in cancer cells. Nanotechnology has become extremely advanced in targeting and imaging cancerous cells. Quantum dots (QDs) are semiconductor NPs, and they are used for bioimaging, biolabeling, and biosensing. They are synthesized by different approaches such as top-down, bottom-up, and synthetic methods. Fully human monoclonal antibodies synthesized using transgenic mice having human immunoglobulin are used to target malignant cells. For the HER2 receptor, herceptin® (trastuzumab) is the most specific antibody (Ab), and it is conjugated with QDs by using different types of coupling mechanisms. This quantum dot monoclonal antibody (QD-mAb) conjugate is localized by injecting it into the blood vessel. After the injection, it goes through a series of steps to reach the intracellular space, and bioimaging of specifically the HER2 receptor occurs, where apoptosis of the cancer cells takes place either by the liberation of Ab or the free radicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jacek Szczygielski ◽  
Marta Kopańska ◽  
Anna Wysocka ◽  
Joachim Oertel

In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.


2021 ◽  
pp. 1-14
Author(s):  
Kristel Metsla ◽  
Sigrid Kirss ◽  
Katrina Laks ◽  
Gertrud Sildnik ◽  
Mari Palgi ◽  
...  

Background: Alzheimer’s disease (AD) is an age-dependent progressive neurodegenerative disorder and the most common cause of dementia. The treatment and prevention of AD present immense yet unmet needs. One of the hallmarks of AD is the formation of extracellular amyloid plaques in the brain, composed of amyloid-β (Aβ) peptides. Besides major amyloid-targeting approach there is the necessity to focus also on alternative therapeutic strategies. One factor contributing to the development of AD is dysregulated copper metabolism, reflected in the intracellular copper deficit and excess of extracellular copper. Objective: In the current study, we follow the widely accepted hypothesis that the normalization of copper metabolism leads to the prevention or slowing of the disease and search for new copper-regulating ligands. Methods: We used cell culture, ICP MS, and Drosophila melanogaster models of AD. Results: We demonstrate that the natural intracellular copper chelator, α-lipoic acid (LA) translocates copper from extracellular to intracellular space in an SH-SY5Y-based neuronal cell model and is thus suitable to alleviate the intracellular copper deficit characteristic of AD neurons. Furthermore, we show that supplementation with LA protects the Drosophila melanogaster models of AD from developing AD phenotype by improving locomotor activity of fruit fly with overexpression of human Aβ with Iowa mutation in the fly brain. In addition, LA slightly weakens copper-induced smooth eye phenotype when amyloid-β protein precursor (AβPP) and beta-site AβPP cleaving enzyme 1 (BACE1) are overexpressed in eye photoreceptor cells. Conclusion: Collectively, these results provide evidence that LA has the potential to normalize copper metabolism in AD.


Author(s):  
Mohamed Koronfel ◽  
Ilias Kounatidis ◽  
Dennis M. Mwangangi ◽  
Nina Vyas ◽  
Chidinma Okolo ◽  
...  

Imaging of actin filaments is crucial due to the integral role that they play in many cellular functions such as intracellular transport, membrane remodelling and cell motility. Visualizing actin filaments has so far relied on fluorescence microscopy and electron microscopy/tomography. The former lacks the capacity to capture the overall local ultrastructure, while the latter requires rigorous sample preparation that can lead to potential artefacts, and only delivers relatively small volumes of imaging data at the thinnest areas of a cell. In this work, a correlative approach utilizing in situ super-resolution fluorescence imaging and cryo X-ray tomography was used to image bundles of actin filaments deep inside cells under near-native conditions. In this case, fluorescence 3D imaging localized the actin bundles within the intracellular space, while X-ray tomograms of the same areas provided detailed views of the local ultrastructure. Using this new approach, actin trails connecting vesicles in the perinuclear area and hotspots of actin presence within and around multivesicular bodies were observed. The characteristic prevalence of filamentous actin in cytoplasmic extensions was also documented.


Author(s):  
Wen-Jing Ren ◽  
Peter Illes

AbstractChronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1β (IL-1β) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.


ADMET & DMPK ◽  
2021 ◽  
Author(s):  
Sergey Staroverov ◽  
Sergey Kozlov ◽  
Alexander Fomin ◽  
Konstantin Gabalov ◽  
Vitaliy Khanadeev ◽  
...  

Silymarin (Sil) was conjugated to selenium nanoparticles (SeNPs) to increase Sil bioavailability. The conjugates were monodisperse; the average diameter of the native SeNPs was ~ 20-50 ± 1.5 nm, whereas that of the conjugates was 30-50 ± 0.5 nm. The use of SeNPs to increase the bioavailability of Syl was examined with the MH-22a, EPNT-5, HeLa, Hep-2, and SPEV-2 cell lines. The EPNT-5 (glioblastoma) cells were the most sensitive to the conjugates compared to the conjugate-free control. The conjugates increased the activity of cellular dehydrogenases and promoted the penetration of Sil into the intracellular space. Possibly, SeNPs play the main part in Sil penetration of cells and Sil penetration is not associated with phagocytosis. Thus, SeNPs are promising for use as a Sil carrier and as protective antigens.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2964
Author(s):  
Mateusz Gąbka ◽  
Paulina Dałek ◽  
Magdalena Przybyło ◽  
Daniel Gackowski ◽  
Ryszard Oliński ◽  
...  

Ascorbate is an important element of a variety of cellular processes including the control of reactive oxygen species levels. Since reactive oxygen species are implicated as a key factor in tumorigenesis and antitumor therapy, the injection of a large amount of ascorbate is considered beneficial in cancer therapy. Recent studies have shown that ascorbate can cross the plasma membrane through passive diffusion. In contrast to absorption by active transport, which is facilitated by transport proteins (SVCT1 and SVCT2). The passive diffusion of a weak acid across membranes depends on the electrostatic potential and the pH gradients. This has been used to construct a new theoretical model capable of providing steady-state ascorbate concentration in the intracellular space and evaluating the time needed to reach it. The main conclusion of the analysis is that the steady-state intracellular ascorbate concentration weakly depends on its serum concentration but requires days of exposure to saturate. Based on these findings, it can be hypothesized that extended oral ascorbate delivery is possibly more effective than a short intravenous infusion of high ascorbate quantities.


Sign in / Sign up

Export Citation Format

Share Document