scholarly journals Coupling Bulk Phase Separation of Disordered Proteins to Membrane Domain Formation in Molecular Simulations on a Bespoke Compute Fabric

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Julian C. Shillcock ◽  
David B. Thomas ◽  
Jonathan R. Beaumont ◽  
Graeme M. Bragg ◽  
Mark L. Vousden ◽  
...  

Phospholipid membranes surround the cell and its internal organelles, and their multicomponent nature allows the formation of domains that are important in cellular signalling, the immune system, and bacterial infection. Cytoplasmic compartments are also created by the phase separation of intrinsically disordered proteins into biomolecular condensates. The ubiquity of lipid membranes and protein condensates raises the question of how three-dimensional droplets might interact with two-dimensional domains, and whether this coupling has physiological or pathological importance. Here, we explore the equilibrium morphologies of a dilute phase of a model disordered protein interacting with an ideal-mixing, two-component lipid membrane using coarse-grained molecular simulations. We find that the proteins can wet the membrane with and without domain formation, and form phase separated droplets bound to membrane domains. Results from much larger simulations performed on a novel non-von-Neumann compute architecture called POETS, which greatly accelerates their execution compared to conventional hardware, confirm the observations. Reducing the wall clock time for such simulations requires new architectures and computational techniques. We demonstrate here an inter-disciplinary approach that uses real-world biophysical questions to drive the development of new computing hardware and simulation algorithms.

2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

AbstractPhase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bio-inspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. By altering the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation, we designed sequences with significantly increased phase separation propensity. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that in spite of these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance a predictive framework and identify key biophysical principles of sequence features important to phase separation.Significance StatementMembraneless organelles are assemblies of highly concentrated biomolecules that form through a liquid-liquid phase separation process. These assemblies are often enriched in intrinsically disordered proteins, which play an important role in driving phase separation. Understanding the sequence-to-phase behavior relationship of these disordered proteins is important for understanding the biochemistry of membraneless organelles, as well as for designing synthetic organelles and biomaterials. In this work, we explore a model protein, the disordered N-terminal domain of LAF-1, and highlight how three key features of the sequence control the protein’s propensity to phase separate. Combining predictive simulations with experiments, we find that phase behavior of this model IDP is dictated by the presence of a short conserved domain, charge patterning, and arginine-tyrosine interactions.


Author(s):  
T. M. Perdikari ◽  
N. Jovic ◽  
G. L. Dignon ◽  
Y. C. Kim ◽  
N. L. Fawzi ◽  
...  

AbstractBiomolecules undergo liquid-liquid phase separation (LLPS) resulting in the formation of multicomponent protein-RNA membraneless organelles in cells. However, the physiological and pathological role of post translational modifications (PTMs) on the biophysics of phase behavior is only beginning to be probed. To study the effect of PTMs on LLPS in silico, we extend our transferable coarse-grained model of intrinsically disordered proteins to include phosphorylated and acetylated amino acids. Using the parameters for modified amino acids available for fixed charge atomistic forcefields, we parameterize the size and atomistic hydropathy of the coarse-grained modified amino acid beads, and hence the interactions between the modified and natural amino acids. We then elucidate how the number and position of phosphorylated and acetylated residues alter the protein’s single chain compactness and its propensity to phase separate. We show that both the number and the position of phosphorylated threonines/serines or acetylated lysines can serve as a molecular on/off switch for phase separation in the well-studied disordered regions of FUS and DDX3X, respectively. We also compare modified residues to their commonly used PTM mimics for their impact on chain properties. Importantly, we show that the model can predict and capture experimentally measured differences in the phase behavior for position-specific modifications, showing that the position of modifications can dictate phase separation. In sum, this model will be useful for studying LLPS of post-translationally modified intrinsically disordered proteins and predicting how modifications control phase behavior with position-specific resolution.Statement of SignificancePost-translational modifications are important regulators of liquid-liquid phase separation (LLPS) which drives the formation of biomolecular condensates. Theoretical methods can be used to characterize the biophysical properties of intrinsically disordered proteins (IDPs). Our recent framework for molecular simulations using a Cα-centered coarse-grained model can predict the effect of various perturbations such as mutations (Dignon et al. PloS Comput. Biol, 2018) and temperature (Dignon et al, ACS Cent. Sci., 2019) on LLPS. Here, we expand this framework to incorporate modified residues like phosphothreonine, phosphoserine and acetylysine. This model will prove useful for simulating the phase separation of post-translationally modified IDPs and predicting how position-specific modifications can control phase behavior across the large family of proteins known to be phosphorylated and acetylated.


2020 ◽  
Author(s):  
Roshan Mammen Regy ◽  
Gregory L. Dignon ◽  
Wenwei Zheng ◽  
Young Chan Kim ◽  
Jeetain Mittal

ABSTRACTRibonucleoprotein (RNP) granules are membraneless organelles (MLOs) which majorly consist of RNA and RNA-binding proteins and are formed via liquid-liquid phase separation (LLPS). Experimental studies investigating the drivers of LLPS have shown that intrinsically disordered proteins (IDPs) and nucleic acids like RNA play a key role in modulating protein phase separation. There is currently a dearth of modelling techniques which allow one to delve deeper into how RNA plays its role as a modulator/promoter of LLPS in cells using computational methods. Here we present a coarse-grained RNA model developed to fill this gap, which together with our recently developed HPS model for protein LLPS, allows us to capture the factors driving RNA-protein co-phase separation. We explore the capabilities of the modelling framework with the LAF-1 RGG/RNA system which has been well studied in experiments and also with the HPS model previously. Further taking advantage of the fact that the HPS model maintains sequence specificity we explore the role of charge patterning on controlling RNA incorporation into condensates. With increased charge patterning we observe formation of structured or patterned condensates which suggests the possible roles of RNA in not only shifting the phase boundaries but also introducing microscopic organization in MLOs.


2019 ◽  
Author(s):  
Antonia Statt ◽  
Helena Casademunt ◽  
Clifford P. Brangwynne ◽  
Athanassios Z. Panagiotopoulos

Phase separation of intrinsically disordered proteins is important for the formation of membraneless organelles, or biomolecular condensates, which play key roles in the regulation of biochemical processes within cells. In this work, we investigated the phase separation of different sequences of a coarse-grained model for intrinsically disordered proteins and discovered a surprisingly rich phase behavior. We studied both the fraction of total hydrophobic parts and the distribution of hydrophobic parts. Not surprisingly, sequences with larger hydrophobic fractions showed conventional liquid-liquid phase separation. The location of the critical point was systematically influenced by the terminal beads of the sequence, due to changes in interfacial composition and tension. For sequences with lower hydrophobicity, we observed not only conventional liquid-liquid phase separation, but also reentrant phase behavior, in which the liquid phase density decreases at lower temperatures. For some sequences, we observed formation of open phases consisting of aggregates, rather than a normal liquid. These aggregates had overall lower densities than the conventional liquid phases, and exhibited complex geometries with large interconnected string-like or membrane-like clusters. Our findings suggest that minor alterations in the ordering of residues may lead to large changes in the phase behavior of the protein, a fact of significant potential relevance for biology.


2021 ◽  
Author(s):  
Giulio Tesei ◽  
Thea K. Schulze ◽  
Ramon Crehuet ◽  
Kresten Lindorff-Larsen

Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalisation of intracellular biochemical reactions. The phase behaviour of IDPs is sequence-dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intra- and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.


2019 ◽  
Author(s):  
Julian C. Shillcock ◽  
Maelick Brochut ◽  
Etienne Chénais ◽  
John H. Ipsen

ABSTRACTPhase separation of immiscible fluids is a common phenomenon in polymer chemistry, and is recognized as an important mechanism by which cells compartmentalize their biochemical reactions. Biomolecular condensates are condensed fluid droplets in cells that form by liquid-liquid phase separation of intrinsically-disordered proteins. They have a wide range of functions and are associated with chronic neurodegenerative diseases in which they become pathologically rigid. Intrinsically-disordered proteins are conformationally flexible and possess multiple, distributed binding sites for each other or for RNA. However, it remains unclear how their material properties depend on the molecular structure of the proteins. Here we use coarse-grained simulations to explore the phase behavior and structure of a model biomolecular condensate composed of semi-flexible polymers with attractive end-caps in a good solvent. Although highly simplified, the model contains the minimal molecular features that are sufficient to observe liquid-liquid phase separation of soluble polymers. The polymers condense into a porous, three-dimensional network in which their end-caps reversibly bind at junctions. The spatial separation of connected junctions scales with the polymer backbone length as a self-avoiding random walk over a wide range of concentration with a weak affinity-dependent prefactor. By contrast, the average number of polymers that meet at the junctions depends strongly on the end-cap affinity but only weakly on the polymer length. The regularity and porosity of the condensed network suggests a mechanism for cells to regulate biomolecular condensates. Interaction sites along a protein may be turned on or off to modulate the condensate’s porosity and tune the diffusion and interaction of additional proteins.


2021 ◽  
Author(s):  
Satwik Ramanjanappa ◽  
Sahithya S. Iyer ◽  
Anand Srivastava

AbstractIntrinsically disordered proteins (IDPs) have engendered a definitive change in the way we think about the classical “sequence-structure-function” dogma. Their conformational pliability and rich molecular recognition features endow them with the ability to bind to diverse partners and predispose them to an elaborate functional armory. And of late, with studies on IDP-based liquid-liquid phase separation (LLPS) leading to formation of functional subcellular coacervates - best described as “membrane-less organelles (MLOs)”, IDPs are also bringing about paradigmatic changes in the way we think about biomolecular assemblies and subcellular organization. Though it is well recognized that the phase behavior of a given IDP is tightly coupled to its amino-acid sequences, there are only a few theories to model polyampholyte coacervation for IDPs. Recently, Joan-Emma Shea and co-workers used field theoretical simulations (FTS) to elucidate the complete phase diagram for LLPS of IDPs by considering different permutations of 50-residues chain representing 25 Lysine and 25 Glutamic acid [1]. Our work is an extension of that FTS framework where we develop and solve an augmented Hamiltonian that also accounts for hydrophobic interactions in the chain. We show that incorporation of hydrophobic interactions result in an advanced onset of coacervation at low densities. The patterning of hydrophobic, positive and negative residues plays important role in determining relative differences in the onset of phase separation. Though still very coarse-grained, once additional chemical specificities are incorporated, these high throughput analytical theory methods can be used as a starting point for designing sequences that drive LLPS.


2018 ◽  
Vol 115 (40) ◽  
pp. 9929-9934 ◽  
Author(s):  
Gregory L. Dignon ◽  
Wenwei Zheng ◽  
Robert B. Best ◽  
Young C. Kim ◽  
Jeetain Mittal

Proteins that undergo liquid–liquid phase separation (LLPS) have been shown to play a critical role in many physiological functions through formation of condensed liquid-like assemblies that function as membraneless organelles within biological systems. To understand how different proteins may contribute differently to these assemblies and their functions, it is important to understand the molecular driving forces of phase separation and characterize their phase boundaries and material properties. Experimental studies have shown that intrinsically disordered regions of these proteins are a major driving force, as many of them undergo LLPS in isolation. Previous work on polymer solution phase behavior suggests a potential correspondence between intramolecular and intermolecular interactions that can be leveraged to discover relationships between single-molecule properties and phase boundaries. Here, we take advantage of a recently developed coarse-grained framework to calculate the θ temperatureTθ, the Boyle temperatureTB, and the critical temperatureTcfor 20 diverse protein sequences, and we show that these three properties are highly correlated. We also highlight that these correlations are not specific to our model or simulation methodology by comparing between different pairwise potentials and with data from other work. We, therefore, suggest that smaller simulations or experiments to determineTθorTBcan provide useful insights into the corresponding phase behavior.


Sign in / Sign up

Export Citation Format

Share Document