scholarly journals Identifying causes of social evolution: The Price approach, contextual analysis, and multilevel selection

2020 ◽  
Author(s):  
Christoph Thies ◽  
Richard A. Watson

AbstractKin selection theory and multilevel selection theory are different approaches to explaining the evolution of social traits. The latter claims that it is useful to regard selection as a process that can occur on multiple levels of organisation such as the level of individuals and the level of groups. This is reflected in a decomposition of fitness into an individual component and a group component. However, the two major statistical tools to determine the coefficients of such a decomposition, the multilevel Price equation and contextual analysis, are inconsistent and may disagree on whether group selection is present. Here we show that the reason for the discrepancies is that underlying the multilevel Price equation and contextual analysis are two nonequivalent causal models for the generation of individual fitness effects (thus leaving different ‘remainders’ explained by group effects). While the multilevel Price equation assumes that the individual effect of a trait determines an individual’s relative success within a group, contextual analysis posits that the individual effect is context-independent. Since these different assumptions reflect claims about the causal structure of the system, the correct approach cannot be determined on general theoretical or statistical grounds but must be identified by experimental intervention. We outline interventions that reveal the underlying causal structure and thus facilitate choosing the appropriate approach. We note that the reductionist viewpoint of kin selection theory with its focus on the individual is immune to such inconsistency because it does not address causal structure with respect to levels of organisation. In contrast, our analysis of the two approaches to measuring group selection demonstrates that multilevel selection theory adds meaningful (falsifiable) causal structure to explain the sources of individual fitness and thereby constitutes a proper refinement of kin selection theory.

2021 ◽  
Vol 9 ◽  
Author(s):  
Christoph Thies ◽  
Richard A. Watson

Kin selection theory and multilevel selection theory are distinct approaches to explaining the evolution of social traits. The latter claims that it is useful to regard selection as a process that can occur on multiple levels of organisation such as the level of individuals and the level of groups. This is reflected in a decomposition of fitness into an individual component and a group component. This multilevel view is central to understanding and characterising evolutionary transitions in individuality, e.g., from unicellular life to multicellular organisms, but currently suffers from the lack of a consistent, quantifiable measure. Specifically, the two major statistical tools to determine the coefficients of such a decomposition, the multilevel Price equation and contextual analysis, are inconsistent and may disagree on whether group selection is present. Here we show that the reason for the discrepancies is that underlying the multilevel Price equation and contextual analysis are two non-equivalent causal models for the generation of individual fitness effects (thus leaving different “remainders” explained by group effects). While the multilevel Price equation assumes that the individual effect of a trait determines an individual's relative success within a group, contextual analysis posits that the individual effect is context-independent. Since these different assumptions reflect claims about the causal structure of the system, the correct approach cannot be determined on general theoretical or statistical grounds but must be identified by experimental intervention. We outline interventions that reveal the underlying causal structure and thus facilitate choosing the appropriate approach. We note that kin selection theory with its focus on the individual is immune to such inconsistency because it does not address causal structure with respect to levels of organisation. In contrast, our analysis of the two approaches to measuring group selection demonstrates that multilevel selection theory adds meaningful (falsifiable) causal structure to explain the sources of individual fitness and thereby constitutes a proper refinement of kin selection theory. Taking such refined causal structure into account seems indispensable for studying evolutionary transitions in individuality because these transitions are characterised by changes in the selection pressures that act on the respective levels.


Author(s):  
James A.R. Marshall

This book demonstrates the generality of inclusive fitness theory, with particular emphasis on its fundamental evolutionary logic. It presents the basic mathematical theory of natural selection and shows how inclusive fitness theory deals with more complicated social scenarios. Topics include the Price equation, Hamilton's rule, nonadditive interactions, conditional behaviors, heritability, and maximization of inclusive fitness. This chapter provides a brief historical introduction to the problem of apparent design in biology, evolutionary explanations of this, and in particular, evolutionary explanations of individual behaviors that appear designed to benefit not the individual themselves, but other members of their species. It examines how social behaviors can be shaped by natural selection and discusses the problem of providing an evolutionary explanation of self-sacrifice by individuals, altruism in group selection, and multilevel selection theory.


2021 ◽  
Vol 44 ◽  
Author(s):  
Dustin Eirdosh ◽  
Susan Hanisch

Abstract Is musicality an individual level adaptation? The authors of this target article reject the need for group selection within their model, yet their arguments do not fulfill the conceptual requirements for justifying such a rejection. Further analysis can highlight the explanatory value of embracing multilevel selection theory as a foundational element of the music and social bonding (MSB) hypothesis.


Studia Humana ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Konrad Szocik ◽  
Stig Lindberg

Abstract Cooperation is a great challenge for natural selection. Some scholars assume that cooperation could not evolve within the framework of natural selection. It is undeniable that natural selection, at least at the individual level, favors selfishness and defectors. Nonetheless, this selfish tendency does not necessarily imply that cooperation could not evolve by means of natural selection. In this paper, we specifically acknowledge certain basic challenges for the evolution of the human ability to cooperate at the level of large groups. In this paper, we discuss topics like the human ability for “supercooperation,” the importance of repetition and reputation, and Multilevel Selection Theory as the basic mechanisms of evolution of cooperation.


2019 ◽  
pp. 109-152
Author(s):  
Jason Potts

This chapter examines the basic institutional similarities between innovation commons (as a species of knowledge commons) and the eight core design principles, or rules of the commons, that Ostrom discovered. It explores the innovation commons through the lens of these rules that enable a group to form under uncertainty, and that make cooperation a safe and effective strategy within that group. The question is explored in terms of the core problems a commons must solve: identity, cooperation, consent, monitoring, punishment, and independence. The chapter then examines these rules in the broader context of multilevel selection theory, arguing that group selection operates over innovation.


1998 ◽  
Vol 21 (2) ◽  
pp. 305-306 ◽  
Author(s):  
David Sloan Wilson ◽  
Elliott Sober

We reinforce Thompson's points by providing a second example of the paradox that makes group selection appear counterintuitive and by discussing the wider implications of multilevel selection theory.


2019 ◽  
Author(s):  
jeff smith ◽  
R. Fredrik Inglis

AbstractFor understanding the evolution of social behavior in microbes, mathematical theory can aid empirical research but is often only used as a qualitative heuristic. How to properly formulate social evolution theory has also been contentious. Here we evaluate kin and multilevel selection theory as tools for analyzing microbial data. We reanalyze published datasets that share a common experimental design and evaluate these theories in terms of data visualization, statistical performance, biological interpretation, and quantitative comparison across systems. We find that the canonical formulations of both kin and multilevel selection are almost always poor analytical tools because they use statistical regressions that are poorly specified for the strong selection and nonadditive fitness effects common in microbial systems. Analyzing both individual and group fitness outcomes helps clarify the biology of selection. We also identify analytical practices in empirical research that suggest how theory might better handle the challenges of microbial data. A quantitative, data-driven approach thus shows how kin and multilevel selection theory both have substantial room for improvement as tools for understanding social evolution in all branches of life.


Author(s):  
Samir Okasha

‘Levels of selection’ examines the levels-of-selection question, which asks whether natural selection acts on individuals, genes, or groups. This question is one of the most fundamental in evolutionary biology, and the subject of much controversy. Traditionally, biologists have mostly been concerned with selection and adaptation at the individual level. But, in theory, there are other possibilities, including selection on sub-individual units such as genes and cells, and on supra-individual units such as groups and colonies. Group selection, altruistic behaviour, kin selection, the gene-centric view of evolution, and the major transitions in evolution are all discussed.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190364 ◽  
Author(s):  
Deborah E. Shelton ◽  
Richard E. Michod

The Price equation embodies the ‘conditions approach’ to evolution in which the Darwinian conditions of heritable variation in fitness are represented in equation form. The equation can be applied recursively, leading to a partition of selection at the group and individual levels. After reviewing the well-known issues with the Price partition, as well as issues with a partition based on contextual analysis, we summarize a partition of group and individual selection based on counterfactual fitness, the fitness that grouped cells would have were they solitary. To understand ‘group selection’ in multi-level selection models, we assume that only group selection can make cells suboptimal when they are removed from the group. Our analyses suggest that there are at least three kinds of selection that can be occurring at the same time: group-specific selection along with two kinds of individual selection, within-group selection and global individual selection. Analyses based on counterfactual fitness allow us to specify how close a group is to being a pseudo-group, and this can be a basis for quantifying progression through an evolutionary transition in individuality (ETI). During an ETI, fitnesses at the two levels, group and individual, become decoupled, in the sense that fitness in a group may be quite high, even as counterfactual fitness goes to zero. This article is part of the theme issue ‘Fifty years of the Price equation’.


Sign in / Sign up

Export Citation Format

Share Document