scholarly journals Identifying Causes of Social Evolution: Contextual Analysis, the Price Approach, and Multilevel Selection

2021 ◽  
Vol 9 ◽  
Author(s):  
Christoph Thies ◽  
Richard A. Watson

Kin selection theory and multilevel selection theory are distinct approaches to explaining the evolution of social traits. The latter claims that it is useful to regard selection as a process that can occur on multiple levels of organisation such as the level of individuals and the level of groups. This is reflected in a decomposition of fitness into an individual component and a group component. This multilevel view is central to understanding and characterising evolutionary transitions in individuality, e.g., from unicellular life to multicellular organisms, but currently suffers from the lack of a consistent, quantifiable measure. Specifically, the two major statistical tools to determine the coefficients of such a decomposition, the multilevel Price equation and contextual analysis, are inconsistent and may disagree on whether group selection is present. Here we show that the reason for the discrepancies is that underlying the multilevel Price equation and contextual analysis are two non-equivalent causal models for the generation of individual fitness effects (thus leaving different “remainders” explained by group effects). While the multilevel Price equation assumes that the individual effect of a trait determines an individual's relative success within a group, contextual analysis posits that the individual effect is context-independent. Since these different assumptions reflect claims about the causal structure of the system, the correct approach cannot be determined on general theoretical or statistical grounds but must be identified by experimental intervention. We outline interventions that reveal the underlying causal structure and thus facilitate choosing the appropriate approach. We note that kin selection theory with its focus on the individual is immune to such inconsistency because it does not address causal structure with respect to levels of organisation. In contrast, our analysis of the two approaches to measuring group selection demonstrates that multilevel selection theory adds meaningful (falsifiable) causal structure to explain the sources of individual fitness and thereby constitutes a proper refinement of kin selection theory. Taking such refined causal structure into account seems indispensable for studying evolutionary transitions in individuality because these transitions are characterised by changes in the selection pressures that act on the respective levels.

2020 ◽  
Author(s):  
Christoph Thies ◽  
Richard A. Watson

AbstractKin selection theory and multilevel selection theory are different approaches to explaining the evolution of social traits. The latter claims that it is useful to regard selection as a process that can occur on multiple levels of organisation such as the level of individuals and the level of groups. This is reflected in a decomposition of fitness into an individual component and a group component. However, the two major statistical tools to determine the coefficients of such a decomposition, the multilevel Price equation and contextual analysis, are inconsistent and may disagree on whether group selection is present. Here we show that the reason for the discrepancies is that underlying the multilevel Price equation and contextual analysis are two nonequivalent causal models for the generation of individual fitness effects (thus leaving different ‘remainders’ explained by group effects). While the multilevel Price equation assumes that the individual effect of a trait determines an individual’s relative success within a group, contextual analysis posits that the individual effect is context-independent. Since these different assumptions reflect claims about the causal structure of the system, the correct approach cannot be determined on general theoretical or statistical grounds but must be identified by experimental intervention. We outline interventions that reveal the underlying causal structure and thus facilitate choosing the appropriate approach. We note that the reductionist viewpoint of kin selection theory with its focus on the individual is immune to such inconsistency because it does not address causal structure with respect to levels of organisation. In contrast, our analysis of the two approaches to measuring group selection demonstrates that multilevel selection theory adds meaningful (falsifiable) causal structure to explain the sources of individual fitness and thereby constitutes a proper refinement of kin selection theory.


Studia Humana ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Konrad Szocik ◽  
Stig Lindberg

Abstract Cooperation is a great challenge for natural selection. Some scholars assume that cooperation could not evolve within the framework of natural selection. It is undeniable that natural selection, at least at the individual level, favors selfishness and defectors. Nonetheless, this selfish tendency does not necessarily imply that cooperation could not evolve by means of natural selection. In this paper, we specifically acknowledge certain basic challenges for the evolution of the human ability to cooperate at the level of large groups. In this paper, we discuss topics like the human ability for “supercooperation,” the importance of repetition and reputation, and Multilevel Selection Theory as the basic mechanisms of evolution of cooperation.


2019 ◽  
Author(s):  
jeff smith ◽  
R. Fredrik Inglis

AbstractFor understanding the evolution of social behavior in microbes, mathematical theory can aid empirical research but is often only used as a qualitative heuristic. How to properly formulate social evolution theory has also been contentious. Here we evaluate kin and multilevel selection theory as tools for analyzing microbial data. We reanalyze published datasets that share a common experimental design and evaluate these theories in terms of data visualization, statistical performance, biological interpretation, and quantitative comparison across systems. We find that the canonical formulations of both kin and multilevel selection are almost always poor analytical tools because they use statistical regressions that are poorly specified for the strong selection and nonadditive fitness effects common in microbial systems. Analyzing both individual and group fitness outcomes helps clarify the biology of selection. We also identify analytical practices in empirical research that suggest how theory might better handle the challenges of microbial data. A quantitative, data-driven approach thus shows how kin and multilevel selection theory both have substantial room for improvement as tools for understanding social evolution in all branches of life.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abel Bernadou ◽  
Boris H. Kramer ◽  
Judith Korb

The evolution of eusociality in social insects, such as termites, ants, and some bees and wasps, has been regarded as a major evolutionary transition (MET). Yet, there is some debate whether all species qualify. Here, we argue that worker sterility is a decisive criterion to determine whether species have passed a MET (= superorganisms), or not. When workers are sterile, reproductive interests align among group members as individual fitness is transferred to the colony level. Division of labour among cooperating units is a major driver that favours the evolution of METs across all biological scales. Many METs are characterised by a differentiation into reproductive versus maintenance functions. In social insects, the queen specialises on reproduction while workers take over maintenance functions such as food provisioning. Such division of labour allows specialisation and it reshapes life history trade-offs among cooperating units. For instance, individuals within colonies of social insects can overcome the omnipresent fecundity/longevity trade-off, which limits reproductive success in organisms, when increased fecundity shortens lifespan. Social insect queens (particularly in superorganismal species) can reach adult lifespans of several decades and are among the most fecund terrestrial animals. The resulting enormous reproductive output may contribute to explain why some genera of social insects became so successful. Indeed, superorganismal ant lineages have more species than those that have not passed a MET. We conclude that the release from life history constraints at the individual level is a important, yet understudied, factor across METs to explain their evolutionary success.


Author(s):  
Samir Okasha

In a standard Darwinian explanation, natural selection takes place at the level of the individual organism, i.e. some organisms enjoy a survival or reproduction advantage over others, which results in evolutionary change. In principle however, natural selection could operate at other hierarchical levels too, above and below that of the organism, for example the level of genes, cells, groups, colonies or even whole species. This possibility gives rise to the ‘levels of selection’ question in evolutionary biology. Group and colony-level selection have been proposed, originally by Darwin, as a means by which altruism can evolve. (In biology, ‘altruism’ refers to behaviour which entails a fitness cost to the individual so behaving, but benefits others.) Though this idea is still alive today, many theorists regard kin selection as a superior explanation for the existence of altruism. Kin selection arises from the fact that relatives share genes, so if an organism behaves altruistically towards its relatives, there is a greater than random chance that the beneficiary of the altruistic action will itself be an altruist. Kin selection is closely bound up with the ‘gene’s eye view’ of evolution, which holds that genes, not organisms, are the true beneficiaries of the evolutionary process. The gene’s eye approach to evolution, though heuristically valuable, does not in itself resolve the levels of selection question, because selection processes that occur at many hierarchical levels can all be seen from a gene’s eye viewpoint. In recent years, the levels of selection discussion has been re-invigorated, and subtly transformed, by the important new work on the ‘major evolutionary transitions’. These transitions occur when a number of free-living biological units, originally capable of surviving and reproducing alone, become integrated into a larger whole, giving rise to a new biological unit at a higher level of organization. Evolutionary transitions are intimately bound up with the levels of selection issue, because during a transition the potential exists for selection to operate simultaneously at two different hierarchical levels.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190364 ◽  
Author(s):  
Deborah E. Shelton ◽  
Richard E. Michod

The Price equation embodies the ‘conditions approach’ to evolution in which the Darwinian conditions of heritable variation in fitness are represented in equation form. The equation can be applied recursively, leading to a partition of selection at the group and individual levels. After reviewing the well-known issues with the Price partition, as well as issues with a partition based on contextual analysis, we summarize a partition of group and individual selection based on counterfactual fitness, the fitness that grouped cells would have were they solitary. To understand ‘group selection’ in multi-level selection models, we assume that only group selection can make cells suboptimal when they are removed from the group. Our analyses suggest that there are at least three kinds of selection that can be occurring at the same time: group-specific selection along with two kinds of individual selection, within-group selection and global individual selection. Analyses based on counterfactual fitness allow us to specify how close a group is to being a pseudo-group, and this can be a basis for quantifying progression through an evolutionary transition in individuality (ETI). During an ETI, fitnesses at the two levels, group and individual, become decoupled, in the sense that fitness in a group may be quite high, even as counterfactual fitness goes to zero. This article is part of the theme issue ‘Fifty years of the Price equation’.


Sign in / Sign up

Export Citation Format

Share Document