scholarly journals Context-dependency in biodiversity-multifunctionality relationships is driven by nitrogen availability and plant functional composition

2020 ◽  
Author(s):  
Noémie A. Pichon ◽  
Seraina L. Cappelli ◽  
Santiago Soliveres ◽  
Tosca Mannall ◽  
Thu Zar Nwe ◽  
...  

SummaryThe ability of an ecosystem to deliver multiple functions at high levels (multifunctionality) typically increases with biodiversity but there is substantial variation in the strength and direction of biodiversity effects, suggesting context-dependency. However, the drivers of this context dependency have not been identified and understood in comparative meta-analyses or experimental studies. To determine how different factors modulate the effect of diversity on multifunctionality, we conducted a large grassland experiment with 216 communities, crossing a manipulation of plant species richness (1-20 species) with manipulations of resource availability (nitrogen enrichment), plant functional composition (gradient in mean specific leaf area [SLA] to manipulate abundances of fast vs. slow species), plant functional diversity (variance in SLA) and enemy abundance (fungal pathogen removal). We measured ten functions, above and belowground, related to productivity, nutrient cycling and energy transfer between trophic levels, and calculated multifunctionality. Plant species richness and functional diversity both increased multifunctionality, but their effects were context dependent. Species richness increased multifunctionality, but only when communities were assembled with fast growing (high SLA) species. This was because slow species were more redundant in their functional effects, whereas fast species tended to promote different functions. Functional diversity also increased multifunctionality but this effect was dampened by nitrogen enrichment, however, unfertilised, functionally diverse communities still delivered more functions than low diversity, fertilised communities. Our study suggests that a shift towards exploitative communities will not only alter ecosystem functioning but also the strength of biodiversity-functioning relationships, which highlights the potentially complex effects of global change on multifunctionality.

Ecology ◽  
2009 ◽  
Vol 90 (12) ◽  
pp. 3290-3302 ◽  
Author(s):  
Elisabeth Marquard ◽  
Alexandra Weigelt ◽  
Vicky M. Temperton ◽  
Christiane Roscher ◽  
Jens Schumacher ◽  
...  

2021 ◽  
Vol 279 ◽  
pp. 111629
Author(s):  
Steffen Boch ◽  
Yasemin Kurtogullari ◽  
Eric Allan ◽  
Malie Lessard-Therrien ◽  
Nora Simone Rieder ◽  
...  

Author(s):  
Lucas Michael Goodman ◽  
Diane M Debinski ◽  
Nicholas J Lyon

Loss of biodiversity due to anthropogenic factors, such as climate change and habitat conversion or loss, is among the largest problems affecting many native ecosystems today. Declines in plant diversity can often have detrimental effects on other forms of biodiversity through cascading trophic systems and negatively impact large-scale ecosystem processes. This is particularly relevant in grassland ecosystems, where in undisturbed systems grasses, forbs, and legumes coexist in diverse communities. Previous studies have explored the hypothesis that loss of plant species negatively impacts biodiversity of other trophic groups and can diminish whole ecosystem functions. In this study we tested how flowering plant species richness influenced arthropod order richness on eight sites in the Grand River Grasslands of south central Iowa, and whether that relationship depended on the vegetation height at which arthropods were sampled. We hypothesized that (1) flowering plant species richness would positively affect arthropod order richness, and that (2) a greater number of arthropod orders would be found 2 centimeters above the ground (hereafter “low”) than 1 meter above the ground (hereafter “high”) at given equal flowering plant species richness. With greater richness of flowering plant species, it is likely that this variety of vegetation supplies a greater amount of habitat available for arthropod communities. Counter to our expectations, flowering plant species richness was not significantly correlated with total arthropod order richness (p = 0.0785). However, richness of “low” arthropod order did increase with an increase in nectar richness (p = 0.0463). Further research including all plant species (rather than merely nectar producing species) and identifying arthropods to a finer taxonomic level may provide more conclusive results supporting our hypotheses. Results of such studies would contribute to the success of biodiversity conservation efforts that focus on bottom-up management practices that can enhance ecosystem functioning at higher trophic levels.


Oecologia ◽  
2017 ◽  
Vol 184 (3) ◽  
pp. 715-728 ◽  
Author(s):  
Simone Cesarz ◽  
Marcel Ciobanu ◽  
Alexandra J. Wright ◽  
Anne Ebeling ◽  
Anja Vogel ◽  
...  

2009 ◽  
Vol 6 (2) ◽  
pp. 3187-3214 ◽  
Author(s):  
A. Weigelt ◽  
W. W. Weisser ◽  
N. Buchmann ◽  
M. Scherer-Lorenzen

Abstract. Modern grassland management seeks to provide many ecosystem services and experimental studies in resource-poor grasslands have shown a positive relationship between plant species richness and a variety of ecosystem functions. Thus, increasing species richness might help to enhance multifunctionality in managed grasslands if the relationship between species richness and ecosystem functioning is equally valid in high-input grassland systems. We tested the relative effects of low-input to high-input management intensities and low to high plant species richness. Using a combination of mowing frequencies (1, 2 or 4 cuts per season) and fertilization levels (0, 100 and 200 kg N ha−1 a−1), we studied the productivity of 78 experimental grassland communities of increasing plant species richness (1, 2, 4, 8 or 16 species with 1 to 4 functional groups) in two successive years. Our results showed that in both years higher diversity was more effective in increasing productivity than higher management intensity: the 16-species mixtures had a surplus of 452 g m−2 y−1 in 2006 and 504 g m−2 y−1 in 2007 over the monoculture yields whereas the high-input management resulted in only 315 g m−2 y−1 higher productivity in 2006 and 440 g m−2 y−1 in 2007 than the low-input management. In addition, high-diversity low-input grassland communities had similar productivity as low-diversity high-input communities. The slopes of the biodiversity – productivity relationships significantly increased with increasing levels of management intensity in both years. We conclude that the biological mechanisms leading to enhanced biomass production in diverse grassland communities are as effective for productivity as a combination of several agricultural measures. Our results demonstrate that high-diversity low-input grassland communities provide not only a high diversity of plants and other organisms, but also ensure high forage yields, thus granting the basis for multifunctional managed grasslands.


Ecography ◽  
2017 ◽  
Vol 41 (5) ◽  
pp. 845-856 ◽  
Author(s):  
Hannah J. White ◽  
W. Ian Montgomery ◽  
Robin J. Pakeman ◽  
Jack J. Lennon

2009 ◽  
Vol 6 (8) ◽  
pp. 1695-1706 ◽  
Author(s):  
A. Weigelt ◽  
W. W. Weisser ◽  
N. Buchmann ◽  
M. Scherer-Lorenzen

Abstract. Modern grassland management seeks to provide many ecosystem services and experimental studies in resource-poor grasslands have shown a positive relationship between plant species richness and a variety of ecosystem functions. Thus, increasing species richness might help to enhance multifunctionality in managed grasslands if the relationship between species richness and ecosystem functioning is equally valid in high-input grassland systems. We tested the relative effects of low-input to high-input management intensities and low to high plant species richness. Using a combination of mowing frequencies (1, 2 or 4 cuts per season) and fertilisation levels (0, 100 and 200 kg N ha−1 a−1), we studied the productivity of 78 experimental grassland communities of increasing plant species richness (1, 2, 4, 8 or 16 species with 1 to 4 functional groups) in two successive years. Our results showed that in both years higher diversity was more effective in increasing productivity than higher management intensity: the 16-species mixtures had a surplus of 449 g m−2 y−1 in 2006 and 492 g m−2 y−1 in 2007 over the monoculture yields whereas the high-input management resulted in only 315 g m−2 y−1 higher productivity in 2006 and 440 g m−2 y−1 in 2007 than the low-input management. In addition, high-diversity low-input grassland communities had similar productivity as low-diversity high-input communities. The slopes of the biodiversity – productivity relationships significantly increased with increasing levels of management intensity in both years. We conclude that the biological mechanisms leading to enhanced biomass production in diverse grassland communities are as effective for productivity as a combination of several agricultural measures. Our results demonstrate that high-diversity low-input grassland communities provide not only a high diversity of plants and other organisms, but also ensure high forage yields, thus granting the basis for multifunctional managed grasslands.


Sign in / Sign up

Export Citation Format

Share Document