composition gradient
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 68)

H-INDEX

27
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 322
Author(s):  
Hong Qi ◽  
Qingshan Shi ◽  
Yuhai Qian ◽  
Yueming Li ◽  
Jingjun Xu ◽  
...  

In this work, the atomic oxygen (AO) erosion-resistance effect and mechanism of the Perhydropolysilazane (PHPS) coating were investigated from the perspective of element distribution in the depth direction. The results revealed that the coating demonstrated good adhesion and intrinsic AO erosion-resistance, which was attributed to the composition gradient formed in the coating. Moreover, the oxygen ratio of the SiOx on top layer of the coating could be elevated during AO exposure, strengthening the Ar ion etching durability of the coating. According to these results, an AO erosion-resistance mechanism model of the PHPS-derived SiOx coating was finally obtained.


2021 ◽  
Author(s):  
Masato Kotsugi ◽  
Tadashi Nishio ◽  
Masahiro Yamamoto ◽  
Takuo Ohkochi ◽  
Daigo Nanasawa ◽  
...  

Abstract Recent progress in materials informatics has triggered growing interest in combinatorial experimental systems for materials development. We demonstrate a novel high-throughput experiment combining compact materials synthesis, synchrotron radiation measurements, and statistical data analysis. This technique focuses on not only drawing phase diagrams but also analysing phase transitions for exploring the functions of magnetic materials. This study involved the rapid preparation of a composition-gradient Fe–Co–Cr ternary thin film using a table-top sputtering system and 3D printer, followed by measurement of the chemical components and magnetic contrast by photoemission electron microscopy, through the acquisition of one million spectral datasets within 10 min. The ternary magnetic phase diagram of Fe–Co–Cr obtained by statistical analysis of the magnetic circular dichroism (MCD) contrast images was in perfect agreement with previous studies. The MCD histogram was fitted based on Landau theory, and the estimated critical exponent β (0.36 ± 0.028) showed excellent agreement with previous theoretical and experimental studies. This study successfully demonstrates universal physical parameter analysis that characterizes magnetic properties by a high-throughput approach combined with a simple experimental apparatus.


Author(s):  
Saqib Nawaz Khan ◽  
Sijie Ge ◽  
Yuxiang Huang ◽  
Han Xu ◽  
Wentao Yang ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1143
Author(s):  
Ali Daher ◽  
Amine Ammar ◽  
Abbas Hijazi ◽  
Lazhar Benyahia

The effect of shear flow on spherical nanoparticles (NPs) migration near a liquid–liquid interface is studied by numerical simulation. We have implemented a compact model through which we use the diffuse interface method for modeling the two fluids and the molecular dynamics method for the simulation of the motion of NPs. Two different cases regarding the state of the two fluids when introducing the NPs are investigated. First, we introduce the NPs randomly into the medium of the two immiscible liquids that are already separated, and the interface is formed between them. For this case, it is shown that before applying any shear flow, 30% of NPs are driven to the interface under the effect of the drag force resulting from the composition gradient between the two fluids at the interface. However, this percentage is increased to reach 66% under the effect of shear defined by a Péclet number Pe = 0.316. In this study, different shear rates are investigated in addition to different shearing times, and we show that both factors have a crucial effect regarding the migration of the NPs toward the interfacial region. In particular, a small shear rate applied for a long time will have approximately the same effect as a greater shear rate applied for a shorter time. In the second studied case, we introduce the NPs into the mixture of two fluids that are already mixed and before phase separation so that the NPs are introduced into the homogenous medium of the two fluids. For this case, we show that in the absence of shear, almost all NPs migrate to the interface during phase separation, whereas shearing has a negative result, mainly because it affects the phase separation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenyi Zheng ◽  
Yue Zhang ◽  
Victor Lopez-Dominguez ◽  
Luis Sánchez-Tejerina ◽  
Jiacheng Shi ◽  
...  

AbstractCurrent-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.


In this study, phase-field model is developed for ferroelectric/ferromagnetic nanocomposites, in which ferroelectric composition is spatially varied along the thickness of ferroelectric layers. The developed phase field model is applied to investigate the effect of composition gradient on magnetoelectric response of the multilayer nanocomposite. Stripe domain structures are observed in both ferroelectric and ferromagnetic layers, however the sizes of magnetic domains are larger than that of polarization ones. Particularly, the size of polarization domains and geometry of domain walls are altered according to the gradient of ferroelectric composition. The obtained results suggest that the larger the composition gradient is, the higher the magnetoelectric effect becomes. The enhancement of magnetoelectric effect is attributed to the concentration of energy in ferroelectric layer, which originates from the spatial variation of ferroelectric composition.


Sign in / Sign up

Export Citation Format

Share Document