scholarly journals Automatic Measurement of Inner Ear in Different Mammals1

2020 ◽  
Author(s):  
Yi Du ◽  
Han-dai Qin ◽  
Chen Liu ◽  
Da Liu ◽  
Shuo-long Yuan ◽  
...  

AbstractObjectiveThe aim of this research is to develop an accurate and automatic measuring method based on the aid of centerline to construct three dimensional models of inner ear in different mammals and to assess the morphological variations.MethodsThree adult healthy mice, three adult guinea pigs, three adult mini pigs and one left temporal bone of human were included in this research. All 18 animal specimens and the human sample were scanned with the use of Micro-CT. After being segmented, three-dimensional models of the inner ear in different mammals were reconstructed using Mimics. A novel method with the use of centerline was established to estimate the properties of 3D models and to calculate the length, volume and angle parameters automatically.ResultsMorphological models of inner ears in different mammals have been built, which describe detailed shape of cochlear, vestibule, semicircular canals and common crus. Mean value of lengths and volumes of the cochlear, lateral semicircular canal, superior semicircular canal and posterior semicircular canal, tended to increase with the body size of the mammals, showed the proximity to the human data in mini pig. The angles between the semicircular canal planes showed differences between mammals. The mean values of semicircular canals of mice and mini pigs closely resembled to human data in numerical assessment.ConclusionThe automatic measurement of the inner ear based on centerline builds an effective way to assess lengths, volumes and angles of three-dimensional structures. This study provides a theoretical basis for mechanical analysis of inner ear in different mammals and proves the similarity between mini pig and human.

Author(s):  
A. A. Popova ◽  
◽  
I. N. Shubin ◽  
R. E. Aliev ◽  
◽  
...  

Three-dimensional models of the body parts were developed using the basic 3D modeling operations (rotation, extrusion, threading, etc.) of the T-FLEX CAD 3D CAD system, which made it possible to significantly simplify the work with assembly 3D models representing a complex structure consisting of a large number of parts. During the trial operation, the advantages of using the T-FLEX CAD 3D CAD system have been proven when working with complex 3D models. The advantages of using the program in the machine-building cluster are shown.


2008 ◽  
Vol 243 (1-2) ◽  
pp. 95-104 ◽  
Author(s):  
Anton A. Poznyakovskiy ◽  
Thomas Zahnert ◽  
Yannis Kalaidzidis ◽  
Rolf Schmidt ◽  
Björn Fischer ◽  
...  

1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2011 ◽  
Vol 49 (4) ◽  
pp. 326-327 ◽  
Author(s):  
Karen A. Eley ◽  
Robin Richards ◽  
Dermot Dobson ◽  
Alf Linney ◽  
Stephen R. Watt-Smith

Sign in / Sign up

Export Citation Format

Share Document