scholarly journals YieldNet: A Convolutional Neural Network for Simultaneous Corn and Soybean Yield Prediction Based on Remote Sensing Data

2020 ◽  
Author(s):  
Saeed Khaki ◽  
Hieu Pham ◽  
Lizhi Wang

AbstractLarge scale crop yield estimation is, in part, made possible due to the availability of remote sensing data allowing for the continuous monitoring of crops throughout its growth state. Having this information allows stakeholders the ability to make real-time decisions to maximize yield potential. Although various models exist that predict yield from remote sensing data, there currently does not exist an approach that can estimate yield for multiple crops simultaneously, and thus leads to more accurate predictions. A model that predicts yield of multiple crops and concurrently considers the interaction between multiple crop’s yield. We propose a new model called YieldNet which utilizes a novel deep learning framework that uses transfer learning between corn and soybean yield predictions by sharing the weights of the backbone feature extractor. Additionally, to consider the multi-target response variable, we propose a new loss function. Numerical results demonstrate that our proposed method accurately predicts yield from one to four months before the harvest, and is competitive to other state-of-the-art approaches.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saeed Khaki ◽  
Hieu Pham ◽  
Lizhi Wang

AbstractLarge-scale crop yield estimation is, in part, made possible due to the availability of remote sensing data allowing for the continuous monitoring of crops throughout their growth cycle. Having this information allows stakeholders the ability to make real-time decisions to maximize yield potential. Although various models exist that predict yield from remote sensing data, there currently does not exist an approach that can estimate yield for multiple crops simultaneously, and thus leads to more accurate predictions. A model that predicts the yield of multiple crops and concurrently considers the interaction between multiple crop yields. We propose a new convolutional neural network model called YieldNet which utilizes a novel deep learning framework that uses transfer learning between corn and soybean yield predictions by sharing the weights of the backbone feature extractor. Additionally, to consider the multi-target response variable, we propose a new loss function. We conduct our experiment using data from 1132 counties for corn and 1076 counties for soybean across the United States. Numerical results demonstrate that our proposed method accurately predicts corn and soybean yield from one to four months before the harvest with an MAE being 8.74% and 8.70% of the average yield, respectively, and is competitive to other state-of-the-art approaches.


2019 ◽  
Vol 221 ◽  
pp. 695-706 ◽  
Author(s):  
Jianbo Qi ◽  
Donghui Xie ◽  
Tiangang Yin ◽  
Guangjian Yan ◽  
Jean-Philippe Gastellu-Etchegorry ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 354-365
Author(s):  
Hannah J. White ◽  
Willson Gaul ◽  
Dinara Sadykova ◽  
Lupe León‐Sánchez ◽  
Paul Caplat ◽  
...  

2014 ◽  
Vol 128 ◽  
pp. 199-206 ◽  
Author(s):  
Jiaoyan Chen ◽  
Guozhou Zheng ◽  
Cong Fang ◽  
Ningyu Zhang ◽  
Huajun Chen ◽  
...  

2021 ◽  
Author(s):  
Federico Figari Tomenotti

Change detection is a well-known topic of remote sensing. The goal is to track and monitor the evolution of changes affecting the Earth surface over time. The recently increased availability in remote sensing data for Earth observation and in computational power has raised the interest in this field of research. In particular, the keywords “multitemporal” and “heterogeneous” play prominent roles. The former refers to the availability and the comparison of two or more satellite images of the same place on the ground, in order to find changes and track the evolution of the observed surface, maybe with different time sensitivities. The latter refers to the capability of performing change detection with images coming from different sources, corresponding to different sensors, wavelengths, polarizations, acquisition geometries, etc. This thesis addresses the challenging topic of multitemporal change detection with heterogeneous remote sensing images. It proposes a novel approach, taking inspiration from recent developments in the literature. The proposed method is based on deep learning - involving autoencoders of convolutional neural networks - and represents an exapmple of unsupervised change detection. A major novelty of the work consists in including a prior information model, used to make the method unsupervised, within a well-established algorithm such as the canonical correlation analysis, and in combining these with a deep learning framework to give rise to an image translation method able to compare heterogeneous images regardless of their highly different domains. The theoretical analysis is supported by experimental results, comparing the proposed methodology to the state of the art of this discipline. Two different datasets were used for the experiments, and the results obtained on both of them show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document