scholarly journals Analysis of next- and third-generation RNA-Seq data reveals the structures of alternative transcription units in bacterial genomes

2021 ◽  
Author(s):  
Qi Wang ◽  
Zhaoqian Liu ◽  
Bo Yan ◽  
Wen-Chi Chou ◽  
Laurence Ettwiller ◽  
...  

ABSTRACTAlternative transcription units (ATUs) are dynamically encoded under different conditions or environmental stimuli in bacterial genomes, and genome-scale identification of ATUs is essential for studying the emergence of human diseases caused by bacterial organisms. However, it is unrealistic to identify all ATUs using experimental techniques, due to the complexity and dynamic nature of ATUs. Here we present the first-of-its-kind computational framework, named SeqATU, for genome-scale ATU prediction based on next-generation RNA-Seq data. The framework utilizes a convex quadratic programming model to seek an optimum expression combination of all of the to-be-identified ATUs. The predicted ATUs in E. coli reached a precision of 0.77/0.74 and a recall of 0.75/0.76 in the two RNA-Sequencing datasets compared with the benchmarked ATUs from third-generation RNA-Seq data. We believe that the ATUs identified by SeqATU can provide fundamental knowledge to guide the reconstruction of transcriptional regulatory networks in bacterial genomes.

2021 ◽  
Vol 7 (27) ◽  
pp. eabf5733
Author(s):  
Rui Lopes ◽  
Kathleen Sprouffske ◽  
Caibin Sheng ◽  
Esther C. H. Uijttewaal ◽  
Adriana Emma Wesdorp ◽  
...  

Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet their functional relevance in specific pathophysiological settings remains to be determined. This is critical to understand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs underlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory networks, enabling to dissect the function of the noncoding genome of cancer cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xinbing Liu ◽  
Wei Gao ◽  
Wei Liu

Background. To further understand the development of the spinal cord, an exploration of the patterns and transcriptional features of spinal cord development in newborn mice at the cellular transcriptome level was carried out. Methods. The mouse single-cell sequencing (scRNA-seq) dataset was downloaded from the GSE108788 dataset. Single-cell RNA-Seq (scRNA-Seq) was conducted on cervical and lumbar spinal V2a interneurons from 2 P0 neonates. Single-cell analysis using the Seurat package was completed, and marker mRNAs were identified for each cluster. Then, pseudotemporal analysis was used to analyze the transcription changes of marker mRNAs in different clusters over time. Finally, the functions of these marker mRNAs were assessed by enrichment analysis and protein-protein interaction (PPI) networks. A transcriptional regulatory network was then constructed using the TRRUST dataset. Results. A total of 949 cells were screened. Single-cell analysis was conducted based on marker mRNAs of each cluster, which revealed the heterogeneity of neonatal mouse spinal cord neuronal cells. Functional analysis of pseudotemporal trajectory-related marker mRNAs suggested that pregnancy-specific glycoproteins (PSGs) and carcinoembryonic antigen cell adhesion molecules (CEACAMs) were the core mRNAs in cluster 3. GSVA analysis then demonstrated that the different clusters had differences in pathway activity. By constructing a transcriptional regulatory network, USF2 was identified to be a transcriptional regulator of CEACAM1 and CEACAM5, while KLF6 was identified to be a transcriptional regulator of PSG3 and PSG5. This conclusion was then validated using the Genotype-Tissue Expression (GTEx) spinal cord transcriptome dataset. Conclusions. This study completed an integrated analysis of a single-cell dataset with the utilization of marker mRNAs. USF2/CEACAM1&5 and KLF6/PSG3&5 transcriptional regulatory networks were identified by spinal cord single-cell analysis.


2019 ◽  
Vol 21 (1) ◽  
pp. 167 ◽  
Author(s):  
Isiaka Ibrahim Muhammad ◽  
Sze Ling Kong ◽  
Siti Nor Akmar Abdullah ◽  
Umaiyal Munusamy

The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.


Sign in / Sign up

Export Citation Format

Share Document