chromatin immunoprecipitation sequencing
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 92)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
Author(s):  
William M Yashar ◽  
Garth Kong ◽  
Jake VanCampen ◽  
Brittany M Smith ◽  
Daniel J Coleman ◽  
...  

Genome-wide mapping of the histone modification landscape is critical to understanding tran-scriptional regulation. Cleavage Under Targets and Tagmentation (CUT&Tag) is a new method for profiling the localization of covalent histone modifications, offering improved sensitivity and decreased cost compared with Chromatin Immunoprecipitation Sequencing (ChIP-seq). Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. GoPeaks implements a Binomial distribution and stringent read count cut-off to nominate candidate genomic regions. We compared the performance of GoPeaks against com-monly used peak calling algorithms to detect H3K4me3, H3K4me1, and H3K27Ac peaks from CUT&Tag data. These histone modifications display a range of peak profiles and are frequently used in epigenetic studies. We found GoPeaks robustly detects genome-wide histone modifica-tions and, notably, identifies H3K27Ac with improved sensitivity compared to other standard peak calling algorithms.


2022 ◽  
Vol 12 ◽  
Author(s):  
Theodore Busby ◽  
Yuechuan Chen ◽  
Tanner C. Godfrey ◽  
Mohammad Rehan ◽  
Benjamin J. Wildman ◽  
...  

Chromatin remodeling, specifically the tissue-specific regulation in mineralized tissues, is an understudied avenue of gene regulation. Here we show that Baf45a and Baf45d, two Baf45 homologs belong to ATPase-dependent SWI/SNF chromatin remodeling complex, preferentially expressed in osteoblasts and odontoblasts compared to Baf45b and Baf45c. Recently, biochemical studies revealed that BAF45A associates with Polybromo-associated BAF (PBAF) complex. However, the BAF45D subunit belongs to the polymorphic canonical BRG1-associated factor (cBAF) complex. Protein profiles of osteoblast and odontoblast differentiation uncovered a significant increase of BAF45A and PBAF subunits during early osteoblast and odontoblast maturation. Chromatin immunoprecipitation sequencing (ChIP-seq) during the bone marrow stromal cells (BMSCs) differentiation showed higher histone H3K9 and H3K27 acetylation modifications in the promoter of Baf45a and Baf45d and increased binding of bone and tooth specific transcription factor RUNX2. Overexpression of Baf45a in osteoblasts activates genes essential for the progression of osteoblast maturation and mineralization. Furthermore, shRNA-mediated knockdown of Baf45a in odontoblasts leads to markedly altered genes responsible for the proliferation, apoptosis, DNA repair, and modest decrease in dentinogenic marker gene expression. Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) assay in Baf45a knockout osteoblasts revealed a noticeable reduction in chromatin accessibility of osteoblast and odontoblast specific genes, along with transcription factor Atf4 and Klf4. Craniofacial mesenchyme-specific loss of Baf45a modestly reduced the mineralization of the tooth and mandibular bone. These findings indicated that BAF45A-dependent mineralized tissue-specific chromatin remodeling through PBAF-RUNX2 crosstalk results in transcriptional activation is critical for early differentiation and matrix maturation of mineralized tissues.


2021 ◽  
Author(s):  
Chenshen Huang ◽  
Ning Wang ◽  
Na Zhang ◽  
Zhizhan Ni ◽  
Xiaohong Liu ◽  
...  

Background: Accumulating evidence suggests that inflammation-related genes may play key roles in tumor immune evasion. Programmed cell death ligand 1 (PD-L1) is an important immune checkpoint involved in mediating antitumor immunity. We performed multi-omics analysis to explore key inflammation-related genes affecting the transcriptional regulation of PD-L1 expression. Methods: The open chromatin region of the PD-L1 promoter was mapped using the assay for transposase-accessible chromatin using sequencing (ATAC-seq) profiles. Correlation analysis of epigenetic data (ATAC-seq) and transcriptome data (RNA-seq) were performed to identify inflammation-related transcription factors whose expression levels were correlated with the chromatin accessibility of the PD-L1 promoter. Chromatin immunoprecipitation sequencing (ChIP-seq) profiles were used to confirm the physical binding of the TF STAT2 and the predicted binding regions. We also confirmed the results of the bioinformatics analysis with cell experiments. Results: We identified chr9:5449463-5449962 and chr9:5450250-5450749 as reproducible open chromatin regions in the PD-L1 promoter. Moreover, we observed a correlation between STAT2 expression and the accessibility of the aforementioned regions. Furthermore, we confirmed its physical binding through ChIP-seq profiles and demonstrated the regulation of PD-L1 by STAT2 overexpression in vitro. Multiple databases were also used for the validation of the results. Conclusion: Our study identified STAT2 as a direct upstream TF regulating PD-L1 expression. The interaction of STAT2 and PD-L1 might be associated with tumor immune evasion in cancers, suggesting the potential value for tumor treatment.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dengwei Zhang ◽  
Si Zhou ◽  
Ziheng Zhou ◽  
Xiaosen Jiang ◽  
Dongsheng Chen ◽  
...  

Abstract Background Birth defects pose a major challenge to infant health. Thus far, however, the causes of most birth defects remain cryptic. Over the past few decades, considerable effort has been expended on disclosing the underlying mechanisms related to birth defects, yielding myriad treatises and data. To meet the increasing requirements for data resources, we developed a freely accessible birth defect multi-omics database (BDdb, http://t21omics.cngb.org) consisting of multi-omics data and potential disease biomarkers. Results In total, omics datasets from 136 Gene Expression Omnibus (GEO) Series records, including 5245 samples, as well as 869 biomarkers of 22 birth defects in six different species, were integrated into the BDdb. The database provides a user-friendly interface for searching, browsing, and downloading data of interest. The BDdb also enables users to explore the correlations among different sequencing methods, such as chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) from different studies, to obtain the information on gene expression patterns from diverse aspects. Conclusion To the best of our knowledge, the BDdb is the first comprehensive database associated with birth defects, which should benefit the diagnosis and prevention of birth defects.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Kristen Drucker ◽  
Connor Yanchus ◽  
Thomas Kollmeyer ◽  
Asma Ali ◽  
Decker Paul ◽  
...  

Abstract BACKGROUND Determination of the causation of germline single nucleotide polymorphisms (SNPs) located in non-coding regions of the genome is challenging. The genomic region of 8q24 has been identified as important in many kinds of cancer, linked to a topologically associated domain (TAD) encompassing MYC; this TAD contains a GWAS SNP (rs55705857) associated with IDH-mutant glioma. METHODS Germline genotyping data from 622 IDH-mutant glioma and 668 controls were used to fine map the rs55705857 locus by detailed haplotype analysis. Chromatin immunoprecipitation sequencing (ChIP-seq) of histone markers H3K4me1, H3K4me3, H3K27ac and H3K36me3 was performed on normal brain samples (n=8) and human glioma samples (n=11 IDH-wt and 52 IDH-mut). RNAseq from 9 normal and 83 brain tumors (n=26 IDH-wt and 55 IDH-mut) were used to assess differential gene expression. RESULTS Fine-mapping identified rs55705857 SNP as the most likely causative allele (OR=8.69; p<0.001) within 8q24 for the development of IDH-mutant glioma. At rs55705857, both H3K27ac and H3K4me1 in IDH-mutant vs IDH-wt tumors were increased 3.05- and 1.58-fold, respectively (DiffBind; p=5.81×10-7 and p=2.31×10-3). ChromHMM analysis of the marks indicated that promoter and enhancer functions were significantly increased, and the activity broadened at rs55705857 in IDH-mut gliomas compared to IDH-wt tumors and normal brain samples. This enhancement correlated with significant increased MYC expression in IDH-mut gliomas (p=3.1×10-13), as well as alterations of Myc signaling targets. Publicly available ATACseq, ChIPseq and long-range DNA interaction data demonstrated that the rs55705857 locus is open and interacts with the MYC promoter. CONCLUSIONS Fine-mapping of the 8q24 locus provided strong evidence that rs55705857 is the causative 8q24 locus associated with IDH-mut glioma. Functional experiments suggest that IDH mutation facilitates rs55705857 interaction with MYC to alter downstream MYC targets.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009423
Author(s):  
Maxwell W. Libbrecht ◽  
Rachel C. W. Chan ◽  
Michael M. Hoffman

Segmentation and genome annotation (SAGA) algorithms are widely used to understand genome activity and gene regulation. These algorithms take as input epigenomic datasets, such as chromatin immunoprecipitation-sequencing (ChIP-seq) measurements of histone modifications or transcription factor binding. They partition the genome and assign a label to each segment such that positions with the same label exhibit similar patterns of input data. SAGA algorithms discover categories of activity such as promoters, enhancers, or parts of genes without prior knowledge of known genomic elements. In this sense, they generally act in an unsupervised fashion like clustering algorithms, but with the additional simultaneous function of segmenting the genome. Here, we review the common methodological framework that underlies these methods, review variants of and improvements upon this basic framework, and discuss the outlook for future work. This review is intended for those interested in applying SAGA methods and for computational researchers interested in improving upon them.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yui Hatanaka ◽  
Takeshi Niinuma ◽  
Hiroshi Kitajima ◽  
Koyo Nishiyama ◽  
Reo Maruyama ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are deeply involved in cancer development. We previously reported that DLEU1 (deleted in lymphocytic leukemia 1) is one of the lncRNAs overexpressed in oral squamous cell carcinoma (OSCC) cells, where it exhibits oncogenic activity. In the present study, we further clarified the molecular function of DLEU1 in the pathogenesis of OSCC. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that DLEU1 knockdown induced significant changes in the levels of histone H3 lysine 4 trimethylation (H3K4me3) and H3K27 acetylation (H3K27ac) in OSCC cells. Notably, DLEU1 knockdown suppressed levels of H3K4me3/ H3K27ac and expression of a number of interferon-stimulated genes (ISGs), including IFIT1, IFI6 and OAS1, while ectopic DLEU1 expression activated these genes. Western blot analysis and reporter assays suggested that DLEU1 upregulates ISGs through activation of JAK-STAT signaling in OSCC cells. Moreover, IFITM1, one of the ISGs induced by DLUE1, was frequently overexpressed in primary OSCC tumors, and its knockdown inhibited OSCC cell proliferation, migration and invasion. These findings suggest that DLEU1 exerts its oncogenic effects, at least in part, through activation of a series ISGs in OSCC cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenwen Zhang ◽  
Qian Ma ◽  
Bing Long ◽  
Zhangyi Sun ◽  
Lingling Liu ◽  
...  

Acute myeloid leukemia (AML) is an aggressive hematological malignancy with high relapse/refractory rate. Genetic and epigenetic abnormalities are driving factors for leukemogenesis. RUNX1 and RUNX2 from the Runt-related transcription factor (RUNX) family played important roles in AML pathogenesis. However, the relationship between RUNX3 and AML remains unclear. Here, we found that RUNX3 was a super-enhancer-associated gene and highly expressed in AML cells. The Cancer Genome Atlas (TCGA) database showed high expression of RUNX3 correlated with poor prognosis of AML patients. We observed that Runx3 knockdown significantly inhibited leukemia progression by inducing DNA damage to enhance apoptosis in murine AML cells. By chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we discovered that RUNX3 in AML cells mainly bound more genes involved in DNA-damage repair and antiapoptosis pathways compared to that in normal bone marrow cells. Runx3 knockdown obviously inhibited the expression of these genes in AML cells. Overall, we identified RUNX3 as an oncogene overexpressed in AML cells, and Runx3 knockdown suppressed AML progression by inducing DNA damage and apoptosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenjun Luo ◽  
Diao He ◽  
Jianhao Zhang ◽  
Zida Ma ◽  
Keling Chen ◽  
...  

Angiogenesis is an important mechanism underlying the development and metastasis of colorectal cancer (CRC) and has emerged as a therapeutic target for metastatic CRC (mCRC). Our recent studies found that Peroxisome proliferator-activated receptor β/δ/D (PPARδ) regulates vascular endothelial growth factor A(VEGFA) secretion and the sensitivity to bevacizumab in CRC. However, its exact effect and underlying mechanisms remain unidentified. In this study, we showed that PPARδ expression was inversely associated with the microvascular density in human CRC tissues. Knockdown of PPARδ enhanced VEGFA expression in HCT116 cells and HUVEC angiogenesis in vitro; these phenomena were replicated in the experimental in vivo studies. By tandem mass tag (TMT)-labeling proteomics and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) was screened and predicted as a target gene of PPARδ. This was verified by exploring the effect of coregulation of PPARδ and ERO1A on the VEGFA expression in HCT116 cells. The results revealed that PPARδ induced VEGFA by interacting with ERO1A. In conclusion, our results suggest that knockdown of PPARδ can promote CRC angiogenesis by upregulating VEGFA through ERO1A. This pathway may be a potential target for mCRC treatment.


2021 ◽  
Author(s):  
Jian Jiao ◽  
Biliang Zhang ◽  
Meng-Lin Li ◽  
Ziding Zhang ◽  
Chang-Fu Tian

AbstractForeign AT-rich genes drive bacterial adaptation to new niches while challenging the existing regulation network. Here we report that MucR, a conserved regulator in α-proteobacteria, balances adaptation and regulatory integrity in Sinorhizobium fredii, a facultative microsymbiont of legumes. Chromatin immunoprecipitation sequencing coupled with transcriptomic data reveal that average transcription levels of both target and non-target genes, under free-living and symbiotic conditions, increase with their conservation levels. Targets involved in environmental adaptation and symbiosis belong to genus or species core and can be repressed or activated by MucR in a condition-dependent manner, implying regulatory integrations. However, most targets are enriched in strain-specific genes of lower expression levels and higher AT%. Within each conservation levels, targets have higher AT% and average transcription levels than non-target genes and can be further up-regulated in the mucR mutant. This is consistent with higher AT% of spacers between −35 and −10 elements of promoters for target genes, which enhances transcription. The MucR recruitment level linearly increases with AT% and the number of a flexible pattern (with periodic repeats of Ts) of target sequences. Collectively, MucR directly represses AT-rich foreign genes with predisposed high transcription potential while progressive erosions of its target sites facilitate regulatory integrations of foreign genes.


Sign in / Sign up

Export Citation Format

Share Document