scholarly journals Are we missing the forest for the trees? Conspecific negative density dependence in a temperate deciduous forest

2021 ◽  
Author(s):  
Kathryn E. Barry ◽  
Stefan A. Schnitzer

AbstractOne of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD must occurs across life history strategies and not be restricted to a single life history strategy. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether the different woody plant growth forms (shrubs, understory trees, mid-story trees, canopy trees, and lianas) at different ontogenetic stages (seedling, sapling, and adult) were overdispersed – a spatial pattern indicative of CNDD – using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. However, this pattern was driven by adult canopy trees. By contrast, understory plants, which can constitute up to 80% of temperate forest plant diversity, were not overdispersed as adults. The lack of overdispersal suggests that CNDD is unlikely to be a major mechanism maintaining understory plant diversity. The focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0245639
Author(s):  
Kathryn E. Barry ◽  
Stefan A. Schnitzer

One of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain community-level diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD should extend to the majority of plant life history strategies. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether understory and canopy woody species across height categories and dispersal syndromes were overdispersed–a spatial pattern indicative of CNDD–using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. Across the whole community, larger individuals were more overdispersed than smaller individuals. The overdispersion of large individuals, however, was driven by canopy trees. By contrast, understory woody species were not overdispersed as adults. This finding indicates that the focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.


2002 ◽  
Vol 18 (5) ◽  
pp. 775-794 ◽  
Author(s):  
Luci Ferreira Ribeiro ◽  
Marcelo Tabarelli

Four structural types of cerrado vegetation were examined to test the following hypotheses: (1) there are predictable changes in woody plant density, species richness and life-history strategies from one structural type to another; and (2) plant species composition in the less-rich structural types represent particular and impoverished subsets of those found in the richer ones. The study was conducted at Fazenda Palmares (5°33′S, 42°37′W) Piauí State, Brazil. A 47% decrease in woody plant density between cerradão (forest) and the least-dense type of cerrado sensu stricto (scrub) was associated with a 40% decrease in species richness. The percentage of lower-layer species was reduced by 29% in the least dense type of cerrado sensu stricto compared to cerradão. The proportion of species that flower and fruit during the rainy season was also reduced by one third. Species were not distributed as impoverished subsets along the cerradão–cerrado sensu stricto gradient. It is argued that the reduction in woody plant density and richness is partly due to factors limiting the occurrence of species with particular life-history strategies. The species composition of structural types is affected by the ‘mass effect’ and also by surrounding biotas, which provide species that colonize particular types of cerrado vegetation. Both these processes reduce the likelihood that the species composition in the poorer structural types are simple subsets of those present in the richer types.


2020 ◽  
Vol 108 (4) ◽  
pp. 1299-1310 ◽  
Author(s):  
Jie Yao ◽  
Benedicte Bachelot ◽  
Lingjun Meng ◽  
Jianghuan Qin ◽  
Xiuhai Zhao ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103344 ◽  
Author(s):  
Tiefeng Piao ◽  
Jung Hwa Chun ◽  
Hee Moon Yang ◽  
Kwangil Cheon

Sign in / Sign up

Export Citation Format

Share Document