Leaf economics explained by optimality principles

2021 ◽  
Author(s):  
Han Wang ◽  
I. Colin Prentice ◽  
Ian J. Wright ◽  
Shengchao Qiao ◽  
Xiangtao Xu ◽  
...  

SUMMARYThe worldwide leaf economics spectrum relates leaf lifespan (LL) to leaf dry mass per unit area (LMA)1. By combining three well-supported principles2–4, we show that an isometric relationship between these two quantities maximizes the leaf’s net carbon gain. This theory predicts a spectrum of equally competent LMA-LL combinations in any given environment, and how their optimal ratio varies across environments. By analysing two large, independent leaf-trait datasets for woody species1,5, we provide quantitative empirical support for the predicted dependencies of LL on LMA and environment in evergreen plants, and for the distinct predicted dependencies of LMA on light, temperature, growing-season length and aridity in evergreen and deciduous plants. We thereby resolve the long-standing question of why deciduous LMA tends to increase (with increasing LL) towards the equator, while evergreen LMA and LL decrease6. We also show how the statistical distribution of LMA within communities can be modelled as an outcome of environmental selection on the global pool of species with diverse values of LMA and LL.

2016 ◽  
Vol 3 (7) ◽  
pp. 160276 ◽  
Author(s):  
Hisanori Harayama ◽  
Atsushi Ishida ◽  
Jin Yoshimura

The leaf economics spectrum has given us a fundamental understanding of the species variations in leaf variables. Across plant species, tight correlations among leaf mass per area (LMA), mass-based nitrogen ( N m ) and photosynthetic rate ( A m ) and leaf lifespan have been well known as trade-offs in leaf carbon economy. However, the regional or biome-level correlations may not be necessary to correspond with the global-scale analysis. Here, we show that almost all leaf variables in overwintering evergreen oaks in Japan were relatively well included within the evergreen-broadleaved trees in worldwide temperate forests, but N m was more consistent with that in deciduous broadleaved trees. Contrary to the universal correlations, the correlation between A m and N m among the evergreen oaks was negative and the correlation between A m and LMA disappeared. The unique performance was due to specific nitrogen allocation within leaves, i.e. the evergreen oaks with later leaf maturation had lower N m but higher nitrogen allocation to photosynthetic enzymes within leaves, to enhance carbon gain against the delayed leaf maturation and the shortened photosynthetic period due to cold winters. Our data demonstrate that correlations between leaf variables in a local scale are occasionally different from averaged global-scale datasets, because of the constraints in each biome.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Rabea Schweiger ◽  
Eva Castells ◽  
Luca Da Sois ◽  
Jordi Martínez-Vilalta ◽  
Caroline Müller

Plants show an extraordinary diversity in chemical composition and are characterized by different functional traits. However, relationships between the foliar primary and specialized metabolism in terms of metabolite numbers and composition as well as links with the leaf economics spectrum have rarely been explored. We investigated these relationships in leaves of 20 woody species from the Mediterranean region grown as saplings in a common garden, using a comparative ecometabolomics approach that included (semi-)polar primary and specialized metabolites. Our analyses revealed significant positive correlations between both the numbers and relative composition of primary and specialized metabolites. The leaf metabolomes were highly species-specific but in addition showed some phylogenetic imprints. Moreover, metabolomes of deciduous species were distinct from those of evergreens. Significant relationships were found between the primary metabolome and nitrogen content and carbon/nitrogen ratio, important traits of the leaf economics spectrum, ranging from acquisitive (mostly deciduous) to conservative (evergreen) leaves. A comprehensive understanding of various leaf traits and their coordination in different plant species may facilitate our understanding of plant functioning in ecosystems. Chemodiversity is thereby an important component of biodiversity.


Science ◽  
2013 ◽  
Vol 340 (6133) ◽  
pp. 741-744 ◽  
Author(s):  
J. L. D. Osnas ◽  
J. W. Lichstein ◽  
P. B. Reich ◽  
S. W. Pacala

2016 ◽  
Vol 113 (28) ◽  
pp. E4043-E4051 ◽  
Author(s):  
Gregory P. Asner ◽  
David E. Knapp ◽  
Christopher B. Anderson ◽  
Roberta E. Martin ◽  
Nicholas Vaughn

Leaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships. Elevation and substrate were codominant drivers of leaf trait distributions. Multiple additional climatic and geophysical factors were secondary determinants of plant traits. Anticorrelations between N and LMA followed general LES theory, but topo-edaphic conditions strongly mediated and, at times, eliminated this classic relationship. We found no evidence for simple P–LMA or N–P trade-offs in forest canopies; rather, we mapped a continuum of N–P–LMA interactions that are sensitive to elevation and temperature. Our results reveal nested climatic and geophysical filtering of LES traits and their interrelationships, with important implications for predictions of forest productivity and acclimation to rapid climate change.


Trees ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 559-569 ◽  
Author(s):  
Sonia Mediavilla ◽  
Iván García-Cunchillos ◽  
Carmen Andrés-Rivera ◽  
Alfonso Escudero

Sign in / Sign up

Export Citation Format

Share Document