scholarly journals The Circadian Phase Response Curve to Light: Conservation across Seasons and Anchorage to Sunset

2021 ◽  
Author(s):  
Hannah K. Dollish ◽  
Sevag Kaladchibachi ◽  
David C. Negelspach ◽  
Fabian Fernandez

Predictions about circadian light responses are largely based on photic phase-response curves (PRCs) generated from animals housed under seasonally agnostic equatorial photoperiods with alternating 12-hour segments of light and darkness. Most of the human population, however, lives at northerly latitudes where seasonal variations in the light-dark schedule are pronounced. Here, we address this disconnect by constructing the first high-resolution seasonal atlas for light-induced circadian phase-resetting. Testing the light responses of nearly 4,000 Drosophila at 120 timepoints across 5 seasonally relevant photoperiods, we determined that many aspects of the circadian PRC waveform are conserved with increasing daylength. Surprisingly though, irrespective of LD schedule, the start of the PRCs always remained anchored to the timing of subjective sunset, creating a differential overlap of the advance zone with the morning hours after subjective sunrise that was maximized under summer photoperiods and minimized under winter photoperiods. These data suggest that circadian photosensitivity is effectively extinguished by the early winter morning and out of optimal phase alignment with the wake schedules of many individuals. They raise the possibility that phototherapy protocols for conditions such as seasonal depression might be improved with programmed light exposure during the final hours of sleep.

2004 ◽  
Vol 286 (3) ◽  
pp. R539-R546 ◽  
Author(s):  
J. A. Evans ◽  
J. A. Elliott ◽  
M. R. Gorman

Circadian pacemakers respond to light pulses with phase adjustments that allow for daily synchronization to 24-h light-dark cycles. In Syrian hamsters, Mesocricetus auratus, light-induced phase shifts are larger after entrainment to short daylengths (e.g., 10 h light:14 h dark) vs. long daylengths (e.g., 14 h light:10 h dark). The present study assessed whether photoperiodic modulation of phase resetting magnitude extends to nonphotic perturbations of the circadian rhythm and, if so, whether the relationship parallels that of photic responses. Male Syrian hamsters, entrained for 31 days to either short or long daylengths, were transferred to novel wheel running cages for 2 h at times spanning the entire circadian cycle. Phase shifts induced by this stimulus varied with the circadian time of exposure, but the amplitude of the resulting phase response curve was not markedly influenced by photoperiod. Previously reported photoperiodic effects on photic phase resetting were verified under the current paradigm using 15-min light pulses. Photoperiodic modulation of phase resetting magnitude is input specific and may reflect alterations in the transmission of photic stimuli.


2014 ◽  
Vol 26 (11) ◽  
pp. 2395-2418 ◽  
Author(s):  
Yasuomi D. Sato ◽  
Kazuyuki Aihara

We study dynamical mechanisms responsible for changes of the firing rate during four different bifurcation transitions in the two-dimensional Hindmarsh-Rose (2DHR) neuron model: the saddle node on an invariant circle (SNIC) bifurcation to the supercritical Andronov-Hopf (AH) one, the SNIC bifurcation to the saddle-separatrix loop (SSL) one, the AH bifurcation to the subcritical AH (SAH) one, and the SSL bifurcation to the AH one. For this purpose, we study slopes of the firing rate curve with respect to not only an external input current but also temperature that can be interpreted as a timescale in the 2DHR neuron model. These slopes are mathematically formulated with phase response curves (PRCs), expanding the firing rate with perturbations of the temperature and external input current on the one-dimensional space of the phase [Formula: see text] in the 2DHR oscillator. By analyzing the two different slopes of the firing rate curve with respect to the temperature and external input current, we find that during changes of the firing rate in all of the bifurcation transitions, the calculated slope with respect to the temperature also changes. This is largely dependent on changes in the PRC size that is also related to the slope with respect to the external input current. Furthermore, we find phase transition–like switches of the firing rate with a possible increase of the temperature during the SSL-to-AH bifurcation transition.


1985 ◽  
Vol 248 (4) ◽  
pp. R407-R414
Author(s):  
H. Underwood

All submammalian vertebrates have extraretinal photoreceptors (ERR) that can mediate entrainment of circadian rhythms to 24-h light-dark (LD) cycles. Phase response curves (PRC) for 6-h fluorescent light pulses were generated for lizards (Sceloporus occidentalis) previously subjected to sectioning of both optic nerves (ONX). The PRC for ONX lizards (only ERRs present) shows a threefold increase in the amplitude of both the advance and delay portions of the PRC compared with a PRC previously generated for sighted S. occidentalis. Also, in contrast to sighted lizards the area of the advance part of the PRC of ONX lizards is greater than the delay portion. Consistent with the shape of the respective PRCs in ONX vs. sighted lizards are the following facts. 1) The range of entrainment to LD cycles is greater in ONX lizards; some sighted lizards free-ran when exposed to LD 6:21.5 or LD 6:23.5 but entrained after ONX lizards reentrained to an 8-h shift in the phase of a LD 6:18 cycle significantly faster than sighted lizards. 3) Forty-two percent of ONX lizards showed a shorter free-running period (tau) in LL than DD, whereas 90% of sighted lizards showed a longer free-running period in LL than in DD. In those lizards in which tau LL greater than tau DD, the the average tau change in ONX lizards in was significantly less than that observed in sighted lizards. These results are consistent with the hypothesis that the eyes have an "inhibitory" role in the circadian system of S. occidentalis.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Tyler Stigen ◽  
P. Danzl ◽  
J Moehlis ◽  
T. I. Netoff

We propose a simple, robust, and linear method to control the spike timing of a periodically firing neuron. The control scheme uses the neuron’s phase response curve to identify an area of optimal sensitivity for the chosen stimulation parameters. The spike advance as a function of current pulse amplitude is characterized at the optimal phase, and a linear least-squares regression is fit to the data. The inverted regression is used as the control function for this method. The efficacy of this method is demonstrated through numerical simulations of a Hodgkin–Huxley style neuron model as well as in real neurons from rat hippocampal slice preparations. The study shows a proof of concept for the application of a linear control scheme to control neuron spike timing in vitro. This study was done on an individual cell level, but translation to a tissue or network level is possible. Control schemes of this type could be implemented in a closed loop implantable device to treat neuromotor disorders involving pathologically neuronal activity such as epilepsy or Parkinson’s disease.


2020 ◽  
pp. 1-21
Author(s):  
Michitaka Yoshimura ◽  
Shingo Kitamura ◽  
Norihito Eto ◽  
Akiko Hida ◽  
Ruri Katsunuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document