scholarly journals Contrasting patterns and co-occurrence network of soil bacterial and fungal community along depth profiles in cold temperate montane forests of China

2021 ◽  
Author(s):  
Li Ji ◽  
Fangyuan Shen ◽  
Yue Liu ◽  
Yuchun Yang ◽  
Jun Wang ◽  
...  

AbstractSoil bacterial and fungal communities with different key ecological functions play an important role in the boreal forest ecosystem. Despite several studies have reported the microbial altitudinal distribution patterns, our understanding about the characteristics of the microbial community and the core composition of the microbiome in cold-temperate mountain forests is still limited. In this study, Illumina MiSeq sequencing was used to investigate the changes in soil bacterial and fungal communities in surface and subsurface soils along at an altitudinal gradient (from 830 m to 1300 m) on Oakley Mountain in the northern Greater Khingan Mountains. Altitude and soil depth had significant impacts on the relative abundance of Proteobacteria, Acidobacteria and Actinobacteria (dominant phylum for bacteria), and altitude had significant impacts on the Ascomycota, Basidiomycota and Mucoromycota (dominant phylum for fungi). The diversity of bacterial and fungal communities showed a monotonous decrease and increase with altitude. The influence of altitude on bacterial and fungal community composition was greater than that of soil depth. The variation of pH and dissolved organic nitrogen (DON) content in different altitudes were the main factors driving the bacterial and fungal community structure, respectively. There is no obvious difference between the network structure of surface and subsurface soil fungal communities, while the network of subsurface soil bacterial communities was more complex and compact than the surface layer. The network nodes mainly belonging to Proteobacteria and Actinobacteria are the key species in the two soil layers. Our results demonstrated that the altitude had a stronger influence on soil bacterial and fungal communities than soil depth, and bacterial and fungal communities showed divergent patterns along the altitudes and soil profiles.

2019 ◽  
Vol 65 (7) ◽  
pp. 530-537 ◽  
Author(s):  
Yang Zhang ◽  
Qing Li ◽  
Yinglong Chen ◽  
Qigen Dai ◽  
Jian Hu

Fungi play a critical role in farmland ecosystems, especially in improving soil fertility; however, little is known about the changes in fungal communities caused by mudflat reclamation under rice cultivation. In this study, mudflats located in Yancheng, China, which were divided into nine plots with 0, 11, and 20 years of successive rice cultivation histories, were sampled to determine the fungal community composition by using Illumina MiSeq sequencing. Results show that the Shannon diversity of the fungal communities did not change significantly but the species richness increased under mudflat reclamation with long-term rice cultivation. Ascomycota was the dominant phylum throughout the reclaimed mudflats samples, while Sordariomycetes was the dominant class. Fungal functional prediction found that the relative abundance of saprotrophs gradually increased with mudflat reclamation and mainly belonged to Ascomycota after 20 years of successive reclamation. Redundancy analysis showed that electrical conductivity, organic matter, and total nitrogen were the main factors affecting the composition and ecological function of the fungal community during mudflat reclamation. In short, a fungal community dominated by Ascomycota was established during mudflat reclamation under rice cultivation, which is more conducive to promoting soil fertility because of the higher proportion of saprotrophic fungi in Ascomycota.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Zhang ◽  
Hongyu Cao ◽  
Peishan Zhao ◽  
Xiaoshuai Wei ◽  
Guodong Ding ◽  
...  

Revegetation is regarded as an effective means to improve the ecological environment in deserts and profoundly influences the potential ecological functions of the soil fungal community. Therefore, Illumina high-throughput sequencing was performed to characterize the soil fungal diversity and community composition at two soil depths (0–10 cm and 10–20 cm) with four revegetation durations (natural grassland, half-mature, nearly mature, and mature Pinus. sylvestris var. mongolica plantations) in the Mu Us Sandy Land, China. The effects of soil properties on soil fungal communities were also examined to reveal the connection between fungal function and soil environment. The results indicated that 1) soil nutrient content and enzyme activity showed significant differences through the restoration durations, 2) there was no significant effect of soil depth on soil fungal diversity, while the Shannon diversity index of all fungal communities was significantly different among different revegetation durations, 3) compared with grassland, ectomycorrhizal fungi (notably, Inocybe, Tuber, and Calostoma) were abundant in plantations. The endophyte fungus Mortierella was among the top 10 genera in all soil samples and arbuscular mycorrhizal fungus Diversispora was the indicator genus of the grassland, and 4) catalase and total nitrogen were the main factors affecting fungal community composition and were closely related to saprotrophs and pathotrophs, respectively. This new information indicates the variation of soil fungal communities along revegetation durations and highlights the interaction between fungal functions and desert ecosystems.


2021 ◽  
Author(s):  
RAUL ALEXANDER ARANGUREN AROCA ◽  
Samuele Voyron ◽  
Fabrizio Ungaro ◽  
Julio Cañón ◽  
Erica Lumini

Abstract Changes in soil fungal community caused by land use have not been sufficiently studied in South-American Andosols, considered globally as important food production areas. This study analyzed 26 soil samples of Andosols collected from locations devoted to conservation, agriculture and mining activities in the southeastern region of Antioquia, Colombia, to establish differences between fungal communities as indicators of the degree of soil perturbation. The study developed a novel heminested PCR with primers SSUmCf Mix, ITS4 and fITS7 to assess Arbuscular Mycorrhizal Fungi detection in a Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region. A non-metric multidimensional scaling allowed exploring driver factors of fungal community changes, while fitted Dirichlet-multinomial models and PERMANOVA tests allowed identifying the correlations between alpha diversity indexes and community dissimilarities, as well as the significance of land use effects on fungal community composition. Furthermore, response ratios were determined to assess effect size by land use over relevant taxa. Results suggest a good coverage of fungal diversity with a detection of 10,529 high-quality ITS2 sequences belonged to phylum Glomeromycota. The analysis shows strong correlations of Shannon and Fisher indexes with dissimilarities on fungal communities among land uses (r=0.94), related to variations in temperature, air humidity and organic matter contents that lead to significant responses in abundances of relevant orders (such as Wallemiales and Trichosporonales). The study highlights the rich fungal biodiversity of the tropical Andosols, their specific sensitivities to environmental perturbation factors, and the useful range of a metabarcoding approach to characterize soil fungal communities.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 324
Author(s):  
Brianna K. Almeida ◽  
Michael S. Ross ◽  
Susana L. Stoffella ◽  
Jay P. Sah ◽  
Eric Cline ◽  
...  

Fungi play prominent roles in ecosystem services (e.g., nutrient cycling, decomposition) and thus have increasingly garnered attention in restoration ecology. However, it is unclear how most management decisions impact fungal communities, making it difficult to protect fungal diversity and utilize fungi to improve restoration success. To understand the effects of restoration decisions and environmental variation on fungal communities, we sequenced soil fungal microbiomes from 96 sites across eight experimental Everglades tree islands approximately 15 years after restoration occurred. We found that early restoration decisions can have enduring consequences for fungal communities. Factors experimentally manipulated in 2003–2007 (e.g., type of island core) had significant legacy effects on fungal community composition. Our results also emphasized the role of water regime in fungal diversity, composition, and function. As the relative water level decreased, so did fungal diversity, with an approximately 25% decline in the driest sites. Further, as the water level decreased, the abundance of the plant pathogen–saprotroph guild increased, suggesting that low water may increase plant-pathogen interactions. Our results indicate that early restoration decisions can have long-term consequences for fungal community composition and function and suggest that a drier future in the Everglades could reduce fungal diversity on imperiled tree islands.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 466 ◽  
Author(s):  
Yasir Arafat ◽  
Muhammad Tayyab ◽  
Muhammad Umar Khan ◽  
Ting Chen ◽  
Hira Amjad ◽  
...  

Continuous cropping frequently leads to soil acidification and major soil-borne diseases in tea plants, resulting in low tea yield. We have limited knowledge about the effects of continuous tea monoculture on soil properties and the fungal community. Here, we selected three replanted tea fields with 2, 15, and 30 years of monoculture history to assess the influence of continuous cropping on fungal communities and soil physiochemical attributes. The results showed that continuous tea monoculture significantly reduced soil pH and tea yield. Alpha diversity analysis showed that species richness declined significantly as the tea planting years increased and the results based on diversity indicated inconsistency. Principal coordinate analysis (PCoA) revealed that monoculture duration had the highest loading in structuring fungal communities. The relative abundance of Ascomycota, Glomeromycota, and Chytridiomycota decreased and Zygomycota and Basidiomycota increased with increasing cropping time. Continuous tea cropping not only decreased some beneficial fungal species such as Mortierella alpina and Mortierella elongatula, but also promoted potentially pathogenic fungal species such as Fusarium oxysporum, Fusarium solani, and Microidium phyllanthi over time. Overall, continuous tea cropping decreased soil pH and potentially beneficial microbes and increased soil pathogenic microbes, which could be the reason for reducing tea yield. Thus, developing sustainable tea farming to improve soil pH, microbial activity, and enhanced beneficial soil microbes under a continuous cropping system is vital for tea production.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Timothy J. Philpott ◽  
Jason S. Barker ◽  
Cindy E. Prescott ◽  
Sue J. Grayston

ABSTRACT Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling.


Sign in / Sign up

Export Citation Format

Share Document