scholarly journals Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system

2018 ◽  
Vol 94 (7) ◽  
Author(s):  
Daniel C Schlatter ◽  
Kendall Kahl ◽  
Bryan Carlson ◽  
David R Huggins ◽  
Timothy Paulitz
2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Zhang ◽  
Hongyu Cao ◽  
Peishan Zhao ◽  
Xiaoshuai Wei ◽  
Guodong Ding ◽  
...  

Revegetation is regarded as an effective means to improve the ecological environment in deserts and profoundly influences the potential ecological functions of the soil fungal community. Therefore, Illumina high-throughput sequencing was performed to characterize the soil fungal diversity and community composition at two soil depths (0–10 cm and 10–20 cm) with four revegetation durations (natural grassland, half-mature, nearly mature, and mature Pinus. sylvestris var. mongolica plantations) in the Mu Us Sandy Land, China. The effects of soil properties on soil fungal communities were also examined to reveal the connection between fungal function and soil environment. The results indicated that 1) soil nutrient content and enzyme activity showed significant differences through the restoration durations, 2) there was no significant effect of soil depth on soil fungal diversity, while the Shannon diversity index of all fungal communities was significantly different among different revegetation durations, 3) compared with grassland, ectomycorrhizal fungi (notably, Inocybe, Tuber, and Calostoma) were abundant in plantations. The endophyte fungus Mortierella was among the top 10 genera in all soil samples and arbuscular mycorrhizal fungus Diversispora was the indicator genus of the grassland, and 4) catalase and total nitrogen were the main factors affecting fungal community composition and were closely related to saprotrophs and pathotrophs, respectively. This new information indicates the variation of soil fungal communities along revegetation durations and highlights the interaction between fungal functions and desert ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

AbstractWastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 410
Author(s):  
Magdalena Frąc ◽  
Giorgia Pertile ◽  
Jacek Panek ◽  
Agata Gryta ◽  
Karolina Oszust ◽  
...  

Waste exogenous organic matter, including spent mushroom substrate (SMS) and chicken manure (CM), can be used as the basis of a soil-improving cropping system in sustainable agriculture. However, there is—as yet—a lack of information about important quality indicators such as the fungal community relative abundance, structure and biodiversity in soils treated with these additives. In this study, the responses of the soil fungal community composition and mycobiome diversity to SMS and CM application compared to the control soil were evaluated using a combination of the following molecular approaches: quantitative polymerase chain reactions, denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, and next-generation sequencing. The most abundant phylum for both treatments was Ascomycota, followed by Basidiomycota. The application of SMS and CM increased the abundance of fungi, including Tremellomycetes and Pezizomycetes for the SMS additive, while the Mortierellomycetes, Pezizomycetes, and Leotiomycetes levels increased after CM addition. SMS and CM beneficially reduced the relative abundance of several operational taxonomic units (OTUs) which are potential crop pathogens. The results provide a novel insight into the fungal community associated with organic additives, which should be beneficial in the task of managing the soil mycobiome as well as crop protection and productivity.


Sign in / Sign up

Export Citation Format

Share Document