scholarly journals Antibody Cocktail Exhibits Broad Neutralization against SARS-CoV-2 and SARS-CoV-2 variants

2021 ◽  
Author(s):  
Yuanyuan Qu ◽  
Xueyan Zhang ◽  
Meiyu Wang ◽  
Lina Sun ◽  
Yongzhong Jiang ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies were generated from convalescent donors in early outbreaks using immune antibody phage display libraries. Of them, two RBD-binding antibodies (F61 and H121) showed high affinity neutralization against SARS-CoV-2, whereas three S2-target antibodies failed to neutralize SARS-CoV-2. Following structure analysis, F61 identified a linear epitope located in residues G446 - S494, which overlapped with angiotensin-converting enzyme 2 (ACE2) binding sites, while H121 recognized a conformational epitope located on the side face of RBD, outside from ACE2 binding domain. Hence the cocktail of the two antibodies achieved better performance of neutralization to SARS-CoV-2. Importantly, F61 and H121 exhibited efficient neutralizing activity against variants B.1.1.7 and B.1.351, those showed immune escape. Efficient neutralization of F61 and H121 against multiple mutations within RBD revealed a broad neutralizing activity against SARS-CoV-2 variants, which mitigated the risk of viral escape. Our findings defined the basis of therapeutic cocktails of F61 and H121 with broad neutralization and delivered a guideline for the current and future vaccine design, therapeutic antibody development, and antigen diagnosis of SARS-CoV-2 and its novel variants.

2020 ◽  
Vol 6 (14) ◽  
pp. eaaz7825
Author(s):  
Longxin Chen ◽  
Chaoyang Zhu ◽  
Hui Guo ◽  
Runting Li ◽  
Limeng Zhang ◽  
...  

Currently, there are no methods available offering solutions to select and identify antibodies binding to a specific conformational epitope of an antigen. Here, we developed a method to allow epitope-directed antibody selection from a phage display library by photocrosslinking bound antibodies to a site that specifically incorporates a noncanonical amino acid, p-benzoyl-l-phenylalanine (pBpa), on the target antigen epitope. By one or two rounds of panning against antibody phage display libraries, those hits that covalently bind to the proximity site of pBpa on specific epitopes of target antigens after ultraviolet irradiation are enriched and selected. This method was applied to specific epitopes on human interleukin-1β and complement 5a. In both cases, more than one-third of hits identified bind to the target epitopes, demonstrating the feasibility and versatility of this method.


2022 ◽  
Author(s):  
Zhaochun Chen ◽  
Peng Zhang ◽  
Yumiko Matsuoka ◽  
Yaroslav Tsybovsky ◽  
Kamille West ◽  
...  

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity1. This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies1,2. Thus, there is an urgent need for effective therapeutic and preventive measures with a broad spectrum of action, especially against variants with an unparalleled number of mutations such as the recently emerged Omicron variant, which is rapidly spreading across the globe3. Here, we used combinatorial antibody phage-display libraries from convalescent COVID-19 patients to generate monoclonal antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein with ultrapotent neutralizing activity. One such antibody, NE12, neutralizes an early isolate, the WA-1 strain, as well as the Alpha and Delta variants with half-maximal inhibitory concentrations at picomolar level. A second antibody, NA8, has an unusual breadth of neutralization, with picomolar activity against both the Beta and Omicron variants. The prophylactic and therapeutic efficacy of NE12 and NA8 was confirmed in preclinical studies in the golden Syrian hamster model. Analysis by cryo-EM illustrated the structural basis for the neutralization properties of NE12 and NA8. Potent and broadly neutralizing antibodies against conserved regions of the SARS-CoV-2 spike protein may play a key role against future variants of concern that evade immune control.


2003 ◽  
Vol 278 (1-2) ◽  
pp. 271-281 ◽  
Author(s):  
Marja-Leena Laukkanen ◽  
Soili Mäkinen-Kiljunen ◽  
Kirsi Isoherranen ◽  
Tari Haahtela ◽  
Hans Söderlund ◽  
...  

Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. 1261-1265 ◽  
Author(s):  
Kui K. Chan ◽  
Danielle Dorosky ◽  
Preeti Sharma ◽  
Shawn A. Abbasi ◽  
John M. Dye ◽  
...  

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds angiotensin-converting enzyme 2 (ACE2) on host cells to initiate entry, and soluble ACE2 is a therapeutic candidate that neutralizes infection by acting as a decoy. By using deep mutagenesis, mutations in ACE2 that increase S binding are found across the interaction surface, in the asparagine 90–glycosylation motif and at buried sites. The mutational landscape provides a blueprint for understanding the specificity of the interaction between ACE2 and S and for engineering high-affinity decoy receptors. Combining mutations gives ACE2 variants with affinities that rival those of monoclonal antibodies. A stable dimeric variant shows potent SARS-CoV-2 and -1 neutralization in vitro. The engineered receptor is catalytically active, and its close similarity with the native receptor may limit the potential for viral escape.


2002 ◽  
Vol 76 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Cristina de Carvalho Nicacio ◽  
R. Anthony Williamson ◽  
Paul W. H. I. Parren ◽  
Åke Lundkvist ◽  
Dennis R. Burton ◽  
...  

ABSTRACT Five human recombinant Fab fragments (Fabs) specific for measles virus (MV) proteins were isolated from three antibody phage display libraries generated from RNAs derived from bone marrow or splenic lymphocytes from three MV-immune individuals. All Fabs reacted in an enzyme-linked immunosorbent assay with MV antigens. In radioimmunoprecipitation assays two of the Fabs, MV12 and MT14, precipitated an ⊘80-kDa protein band corresponding to the hemagglutinin (H) protein from MV-infected Vero cell cultures, while two other Fabs, MT64 and GL29, precipitated an ⊘60-kDa protein corresponding the nucleocapsid (N) protein. In competition studies with MV fusion, H- and N protein-specific monoclonal antibodies (MAbs), the H-specific Fabs predominantly blocked the binding of H-specific MAbs, while the N-specific Fabs blocked MAbs to N. In addition, N-specific Fabs bound to denatured MV N protein in Western blotting. The specificity of the fifth Fab, MV4, could not be determined. By plaque reduction assays, three of the five Fabs, MV4, MV12, and MT14, exhibited neutralizing activity (80% cutoff) against MV (LEC-KI strain) at concentrations ranging between ≈2 and 7 μg ml−1. Neutralization capacity against MV strains Edmonston and Schwarz was also detected, albeit at somewhat higher Fab concentrations. In conclusion, three neutralizing Fabs were isolated, two of them reactive against the H glycoprotein of MV and another reactive against an undefined epitope. This is the first study in which MV-neutralizing human recombinant Fab antibodies have been isolated from phage display libraries.


2015 ◽  
Vol 15 (1) ◽  
pp. 10 ◽  
Author(s):  
Jonas Kügler ◽  
Sonja Wilke ◽  
Doris Meier ◽  
Florian Tomszak ◽  
André Frenzel ◽  
...  

2008 ◽  
Vol 13 (7-8) ◽  
pp. 318-324 ◽  
Author(s):  
David R. Buckler ◽  
Albert Park ◽  
Malini Viswanathan ◽  
Rene M. Hoet ◽  
Robert C. Ladner

Sign in / Sign up

Export Citation Format

Share Document