scholarly journals Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered domains (rafts)

2021 ◽  
Author(s):  
Pavana Suresh ◽  
W. Todd Miller ◽  
Erwin London

ABSTRACTUsing efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of insulin receptor (IR) in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length. Increasing acyl chain length increases both bilayer width and the propensity to form ordered domains. To distinguish the effects of membrane width and domain formation, we incorporated purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths. IR activity increases with increased chain length, but more modestly than by increasing lipid acyl chain length in cells. This suggests that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases with sodium orthovanadate showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. The results are consistent with a model in which a combination of bilayer width and ordered domain formation modulate IR activity via effects upon IR conformation and accessibility to phosphatases.SignificanceThis study shows how methyl-α-cyclodextrin mediated lipid exchange can be used to probe the influence of lipid structure upon the functioning of a transmembrane receptor. Plasma membranes having a propensity to form Lo domains are required to support a high level of IR activity. The studies indicate this may reflect an effect of lipid environment upon IR domain localization, which in turn alters its conformation and vulnerability to phosphatases. Alterations in lipid composition could conceivably regulate IR activity in vivo.

2017 ◽  
Vol 53 (51) ◽  
pp. 6836-6839 ◽  
Author(s):  
T. Walter ◽  
J. Schlegel ◽  
A. Burgert ◽  
A. Kurz ◽  
J. Seibel ◽  
...  

The acyl chain length and the azide position strongly influence the accessibility of the DBCO-dye, which was studied via TCEP quenching and anisotropy experiments.


2009 ◽  
Vol 19 (24) ◽  
pp. 6975-6977 ◽  
Author(s):  
Jakub Novotný ◽  
Kateřina Pospěchová ◽  
Alexandr Hrabálek ◽  
Robert Čáp ◽  
Kateřina Vávrová

Sign in / Sign up

Export Citation Format

Share Document