lipid concentration
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 46)

H-INDEX

29
(FIVE YEARS 2)

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Razlin Azman Halimi ◽  
Carolyn A. Raymond ◽  
Bronwyn J. Barkla ◽  
Sean Mayes ◽  
Graham J. King

The underutilised grain legume bambara groundnut (Vigna subterranea) has the potential to contribute significantly to nutritional security. However, the lack of commercial cultivars has hindered its wider adoption and utilisation as a food source. The development of competitive cultivars is impeded by (1) lack of systematic data describing variation in nutritional composition within the gene pool, and (2) a poor understanding of how concentrations of different nutritional components interact. In this study, we analysed seed lipid and protein concentration and lipid composition within a collection of 100 lines representing the global gene pool. Seed protein and lipid varied over twofold with a normal distribution, but no significant statistical correlation was detected between the two components. Seed lipid concentration (4.2–8.8 g/100 g) is primarily determined by the proportion of oleic acid (r2 = 0.45). Yield and composition data for a subset of 40 lines were then used to test selection parameters for high yielding, high lipid breeding lines. From five selection indices tested using 15 scenarios, an index based on the seed number, seed weight, and oleic acid yielded a > 50% expected increase in each of the mean values of seed number, pod dry weight, seed dry weight, and seed size, as well as an expected 7% increase in seed lipid concentration.


Medicine ◽  
2021 ◽  
Vol 100 (49) ◽  
pp. e28172
Author(s):  
Xueyuan Zeng ◽  
Weimin Zhao ◽  
Yunlong Xu ◽  
Chengwei Zhang ◽  
Junliang Wu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Vienna Tran ◽  
Enrico De Martino ◽  
Julie Hides ◽  
Gordon Cable ◽  
James M. Elliott ◽  
...  

Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.


Author(s):  
Enrico De Martino ◽  
Julie Hides ◽  
James M. Elliott ◽  
Mark A. Hoggarth ◽  
Jochen Zange ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Napapat Sitthikitpanya ◽  
Sureewan Sittijunda ◽  
Sontaya Khamtib ◽  
Alissara Reungsang

Abstract Background A platform for the utilization of the Chlorella sp. biomass and sugarcane leaves to produce multiple products (biorefinery concept) including hydrogen, methane, polyhydroxyalkanoates (PHAs), lipid, and soil supplement with the goal to achieve the zero waste generation (circular economy) is demonstrated in this study. Microalgal biomass were hydrolyzed by mixed enzymes while sugarcane leaves were pretreated with alkali followed by enzyme. Hydrolysates were used to produce hydrogen and the hydrogenic effluent was used to produce multi-products. Solid residues at the end of hydrogen fermentation and the remaining acidified slurries from methane production were evaluated for the compost properties. Results The maximum hydrogen yield of 207.65 mL-H2/g-volatile solid (VS)added was obtained from 0.92, 15.27, and 3.82 g-VS/L of Chlorella sp. biomass hydrolysate, sugarcane leaf hydrolysate, and anaerobic sludge, respectively. Hydrogenic effluent produced 321.1 mL/g-VS of methane yield, 2.01 g/L PHAs concentration, and 0.20 g/L of lipid concentration. Solid residues and the acidified slurries at the end of the hydrogen and methane production process were proved to have compost properties. Conclusion Hydrogen production followed by methane, PHA and lipid productions is a successful integrated circular biorefinery platform to efficiently utilize the hydrolysates of Chlorella sp. biomass and sugarcane leaf. The potential use of the solid residues at the end of hydrogen fermentation and the remaining acidified slurries from methane production as soil supplements demonstrates the zero waste concept. The approach revealed in this study provides a foundation for the optimal use of feedstock, resulting in zero waste. Graphic Abstract


2021 ◽  
Author(s):  
Silvia Donzella ◽  
Immacolata Serra ◽  
Andrea Fumagalli ◽  
Luisa Pellegrino ◽  
Concetta Compagno

Abstract BackgroundMicrobial lipids have been emerging as a sustainable alternative to vegetable oils and animal fat to produce biodiesel and industrial relevant chemicals. The use of wastes for microbial processes can represent a way for upgrading low value feedstock to high value products, addressing one of the main goals of circular economy, the reduction of wastes by recycling. Two oleaginous yeasts, Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum, were used in this study to demonstrate the feasibility of the proposed approach. ResultsIn this study wastes from industrial food processing, as pumpkin peels and syrup from candied fruits manufacture, were used for yeast cultivation and for lipids production. Evaluation of growth and sugar consumption revealed marked differences between the yeasts in capacity to utilize sucrose and glucose, the main sugars present in the feedstock. In particular, we observed an unexpected limitation in glucose metabolism on mineral media by R. azoricus. Both species showed ability to grow and accumulate lipids on media exclusively composed by undiluted pumpkin peels hydrolysate, and R. azoricus was the best performing. By a two-stage process carried out in bioreactor, this species reached a biomass concentration of 45 g/L (dry weight) containing 55% of lipids, corresponding to a lipid concentration of 24 g/L, with a productivity of 0.26 g/L/h and yield of 0.29 g lipids per g of utilized sugar. These values are close to the highest reported so far from organic wastes. ConclusionsWastes from industrial food processing were sufficient to completely support yeast growth and to induce lipid accumulation. This study provides strong evidence that the concept of valorisation through the production of lipids from the complete metabolism of nutrients present in agro-industrial wastes by oleaginous yeasts is promising for implementation of biotechnological processes in a circular economy contest.


2021 ◽  
Vol 11 (9) ◽  
pp. 883
Author(s):  
Sun-Young Shim ◽  
Ha-Young Yoon ◽  
Jeong Yee ◽  
Ji-Min Han ◽  
Hye-Sun Gwak

Background: Although ABCA1 gene polymorphisms may be associated with the plasma lipid concentration, the literature has not shown a consistent pattern. In this study, we attempted to elucidate the association between the ABCA1 69C>T, 825V>I, and 230R>C polymorphisms and the plasma lipid concentration through a systematic review and meta-analysis. Methods: We selected studies published up to October 2020 in the PubMed, Web of Science, and Embase databases according to inclusion and exclusion criteria. The mean difference (MD) and 95% confidence interval (CI) were used to assess the relationship between the presence of ABCA1 69C>T, 825V>I, and 230R>C and plasma lipid levels. Meta-analysis was performed using Review Manager (version 5.3). Both Begg’s test and Egger’s regression test of the funnel plot were performed using R Studio software (version 3.6.0) to identify publication bias. Results: We analyzed the data on the ABCA1 69C>T polymorphism involving 14,843 subjects in 11 studies, 825V>I polymorphism involving 2580 subjects in 5 studies, and 230R>C polymorphism involving 4834 subjects in 4 studies. The T allele carriers in 69C>T, II carriers in 825V>I, and C carriers in 230R>C had lower high-density lipoprotein cholesterol levels; the MD (95% CI) was −0.05 mmol/L (95% CI: −0.09 to −0.01, p = 0.02), −0.05 mmol/L (95% CI: −0.09 to −0.00, p = 0.03), and −0.1 mmol/mL (95% CI: −0.12 to −0.07 mmol/L, p < 0.00001), respectively. In the case of 230R>C, the serum total cholesterol concentration of C carriers was significantly lower than that of RR carriers (−0.2 mmol/L, 95% CI: −0.3 to −0.11, p < 0.0001). Conclusion: This meta-analysis demonstrates that the ABCA1 69C>T, 825V>I, and 230R>C polymorphisms could affect the plasma lipid concentration. As the plasma lipid concentration may be related to various diseases, ABCA1 genotyping could be useful for the management of lipid levels.


2021 ◽  
Author(s):  
Vivek Patel ◽  
Denish Bardoliwala ◽  
Rohan Lalani ◽  
Sushilkumar Patil ◽  
Saikat Ghosh ◽  
...  

Background: The current study sought to formulate a dry powder inhalant (DPI) for pulmonary delivery of lipopolymeric nanoparticles (LPNs) consisting of cisplatin and siRNA for multidrug-resistant lung cancer. siRNA against ABCC3 gene was used to silence drug efflux promoter. Results & discussion: The formulation was optimized through the quality by design system by nanoparticle size and cisplatin entrapment. The lipid concentration, polymer concentration and lipid molar ratio were selected as variables. The DPI was characterized by in vitro deposition study using the Anderson cascade impactor. DPI formulation showed improved pulmonary pharmacokinetic parameters of cisplatin with higher residence time in lungs. Conclusion: Local delivery of siRNA and cisplatin to the lung tissue resulted into an enhanced therapeutic effectiveness in combating drug resistance.


2021 ◽  
Vol 11 (14) ◽  
pp. 6290
Author(s):  
Sarah H. Rashedy ◽  
Mohamed S. M. Abd El Hafez ◽  
Mahmoud A. Dar ◽  
João Cotas ◽  
Leonel Pereira

Alginates are one of the most important compounds of brown seaweeds. These compounds are employed in the food area, because of their important rheological properties, such as viscosity, gelling, and stabilizing features and as dietary fiber source. In this study, five species of dominant brown seaweeds were collected in the Red Sea (Padina boergesenii, Turbinaria triquetra, Hormophysa cuneiformis, Dictyota ciliolata, and Sargassum aquifolium) so as to characterize the alginate yield and its properties. The analysis demonstrated differences in the alginate yield among the seaweeds. The highest yield of alginate was recorded in the species T. triquetra (22.2 ± 0.56% DW), while the lowest content was observed in H. cuneiformis (13.3 ± 0.52% DW). The viscosity from the alginates varied greatly between the species, whereas the pH varied slightly. The alginate exhibited a moisture content between 6.4 and 13.1%, the ash content ranged between 12.3 and 20% DW, the protein reached values from 0.57 to 1.47% DW, and the lipid concentration varied from 0.3 to 3.5% DW. Thus, the phytochemical analysis demonstrated that the extracted alginates can be safely applied in the food industry. Furthermore, the alginate yield reveals the potential application of these seaweeds as a nutraceutical raw source, which can be exploited by the food industry.


Sign in / Sign up

Export Citation Format

Share Document