scholarly journals Watching Death in the Gerbil Cochlea Using Optical Coherence Tomography (OCT)

2021 ◽  
Author(s):  
Nam Hyun Cho ◽  
Haobing Wang ◽  
Sunil Puria

Because it is difficult to directly observe the morphology of the living cochlea, our ability to infer the mechanical functioning of the living ear has been limited. Nearly all of our knowledge about cochlear morphology comes from postmortem tissue that was fixed and processed using procedures that possibly distort the structures and fluid spaces of the organ of Corti. In this study, optical coherence tomography was employed to obtain in vivo and postmortem micron-scale volumetric images of the high-frequency hook region of the gerbil cochlea through the round-window membrane. The anatomical structures and fluid spaces of the organ of Corti were segmented and quantified in vivo and over a 90-minute postmortem period. The results show that some aspects of the organ of Corti are significantly altered over the course of death, such as the volumes of the fluid spaces, whereas the dimensions of other features change very little. We postulate that the fluid space of the outer tunnel and its surrounding tectal cells form a resonant structure that can affect the motion of the reticular lamina and thereby have a profound effect on outer-hair-cell transduction and thus cochlear amplification. In addition, the in vivo fluid pressure of the inner spiral sulcus is postulated to effectively inflate the connected sub-tectorial gap between the tectorial membrane and the reticular lamina. This gap height decreases after death, which is hypothesized to reduce and disrupt hair-cell transduction.

2002 ◽  
Vol 126 (6) ◽  
pp. 683-689 ◽  
Author(s):  
Kurtis D. Korver ◽  
Leonard P. Rybak ◽  
Craig Whitworth ◽  
Kathleen M. Campbell

OBJECTIVE: Cisplatin is a widely used, very effective chemotherapeutic agent that can cause severe ototoxicity. In this study, D-methionine was tested as an otoprotectant via round window membrane (RWM) application in the chinchilla. METHODS: A minute amount of cisplatin alone, or D-methionine followed by cisplatin, was applied topically directly to the intact RWM of anesthetized adult chinchillas. Auditory brainstem responses were measured before and 1 week after topical round window application. Animals were killed, and the cochleas were examined. RESULTS: The ears pretreated with D-methionine were completely protected from hearing loss and hair cell loss in the organ of Corti compared with controls. The ears receiving cisplatin without D-methionine protection sustained nearly complete hearing loss with threshold shifts of >60 dB, with extensive outer hair cell loss throughout the organ of Corti but particularly in the basal turn. CONCLUSION: These results demonstrate that topical D-methionine provides excellent otoprotection against cisplatin-induced ototoxicity both electrophysiologically and structurally.


2012 ◽  
Vol 102 (3) ◽  
pp. 388-398 ◽  
Author(s):  
Sripriya Ramamoorthy ◽  
Alfred L. Nuttall

2012 ◽  
Author(s):  
Niloy Choudhury ◽  
Fangyi Chen ◽  
Dingjun Zha ◽  
Anders Fridberger ◽  
Jiefu Zheng ◽  
...  

Author(s):  
Silvia T. Erni ◽  
John C. Gill ◽  
Carlotta Palaferri ◽  
Gabriella Fernandes ◽  
Michelle Buri ◽  
...  

Sensorineural hearing loss is prevalent within society affecting the quality of life of 460 million worldwide. In the majority of cases, this is due to insult or degeneration of mechanosensory hair cells in the cochlea. In adult mammals, hair cell loss is irreversible as sensory cells are not replaced spontaneously. Genetic inhibition of Notch signaling had been shown to induce hair cell formation by transdifferentiation of supporting cells in young postnatal rodents and provided an impetus for targeting Notch pathway with small molecule inhibitors for hearing restoration. Here, the oto-regenerative potential of different γ-secretase inhibitors (GSIs) was evaluated in complementary assay models, including cell lines, organotypic cultures of the organ of Corti and cochlear organoids to characterize two novel GSIs (CPD3 and CPD8). GSI-treatment induced hair cell gene expression in all these models and was effective in increasing hair cell numbers, in particular outer hair cells, both in baseline conditions and in response to ototoxic damage. Hair cells were generated from transdifferentiation of supporting cells. Similar findings were obtained in cochlear organoid cultures, used for the first time to probe regeneration following sisomicin-induced damage. Finally, effective absorption of a novel GSI through the round window membrane and hair cell induction was attained in a whole cochlea culture model and in vivo pharmacokinetic comparisons of transtympanic delivery of GSIs and different vehicle formulations were successfully conducted in guinea pigs. This preclinical evaluation of targeting Notch signaling with novel GSIs illustrates methods of characterization for hearing restoration molecules, enabling translation to more complex animal studies and clinical research.


2004 ◽  
Vol 171 (4S) ◽  
pp. 68-68 ◽  
Author(s):  
Markus D. Sachs ◽  
Dmitry Daniltchenko ◽  
Eva Lankenau ◽  
Frank Koenig ◽  
Gerion Huettmann ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 808
Author(s):  
Max Philipp Brinkmann ◽  
Nikolas Xavier Kibele ◽  
Michelle Prasuhn ◽  
Vinodh Kakkassery ◽  
Mario Damiano Toro ◽  
...  

Optical coherence tomography angiography (OCTA) is a non-invasive tool for imaging and quantifying the retinal and choroidal perfusion state in vivo. This study aimed to evaluate the acute effects of isometric and dynamic exercise on retinal and choroidal sublayer perfusion using OCTA. A pilot study was conducted on young, healthy participants, each of whom performed a specific isometric exercise on the first day and a dynamic exercise the day after. At baseline and immediately after the exercise, heart rate (HR), mean arterial pressure (MAP), superficial capillary plexus perfusion (SCPP), deep capillary plexus perfusion (DCPP), choriocapillaris perfusion (CCP), Sattlers’s layer perfusion (SLP), and Haller’s layer perfusion (HLP) were recorded. A total of 34 eyes of 34 subjects with a mean age of 32.35 ± 7.87 years were included. HR as well as MAP increased significantly after both types of exercise. Both SCPP and DCPP did not show any significant alteration due to isometric or dynamic exercise. After performing dynamic exercise, CCP, SLP, as well as HLP significantly increased. Changes in MAP correlated significantly with changes in HLP after the dynamic activity. OCTA-based analysis in healthy adults following physical activity demonstrated a constant retinal perfusion, supporting the theory of autoregulatory mechanisms. Dynamic exercise, as opposed to isometric activity, significantly changed choroidal perfusion. OCTA imaging may represent a novel and sensitive tool to expand the diagnostic spectrum in the field of sports medicine.


Sign in / Sign up

Export Citation Format

Share Document