scholarly journals Chromatin accessibility of primary human cancers ties regional mutational processes with tissues of origin

2021 ◽  
Author(s):  
Oliver Ocsenas ◽  
Jüri Reimand

Regional mutagenesis in cancer genomes associates with DNA replication timing (RT) and chromatin accessibility (CA) of normal cells, however human cancer epigenomes remain uncharacterized in this context. Here we model megabase-scale mutation frequencies in 2517 cancer genomes with 773 CA and RT profiles of cancers and normal cells. We find that CA profiles of matching cancers, rather than normal cells, predict regional mutagenesis and mutational signatures, indicating that most passenger mutations follow the epigenetic landscapes of transformed cells. Carcinogen-induced and unannotated signatures show the strongest associations with epigenomes. Associations with normal cells in melanomas, lymphomas and SBS1 signatures suggest earlier occurrence of mutations in cancer evolution. Frequently mutated regions unexplained by CA and RT are enriched in cancer genes and developmental pathways, reflecting contributions of localized mutagenesis and positive selection. These results underline the complex interplay of mutational processes, genome function and evolution in cancer and tissues of origin.

2021 ◽  
Author(s):  
Erik N Bergstrom ◽  
Jens-Christian Luebeck ◽  
Mia Petljak ◽  
Vineet Bafna ◽  
Paul S. Mischel ◽  
...  

Clustered somatic mutations are common in cancer genomes with prior analyses revealing several types of clustered single-base substitutions, including doublet- and multi-base substitutions, diffuse hypermutation termed omikli, and longer strand-coordinated events termed kataegis. Here, we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome sequenced cancers from 30 cancer types. While only 3.7% of substitutions and 0.9% of indels were found to be clustered, they contributed 8.4% and 6.9% of substitution and indel drivers, respectively. Multiple distinct mutational processes gave rise to clustered indels including signatures enriched in tobacco smokers and homologous-recombination deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, while the majority of multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, previously attributed to the activity of APOBEC3 deaminases, accounted for a large proportion of clustered substitutions. However, only 16.2% of omikli matched APOBEC3 patterns with experimental validation confirming additional mutational processes giving rise to omikli. Kataegis was generated by multiple mutational processes with 76.1% of all kataegic events exhibiting AID/APOBEC3-associated mutational patterns. Co-occurrence of APOBEC3 kataegis and extrachromosomal-DNA (ecDNA) was observed in 31% of samples with ecDNA. Multiple distinct APOBEC3 kataegic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kataegic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fueling the evolution of ecDNA.


2018 ◽  
Author(s):  
Giorgio Mattiuz ◽  
Salvatore Di Giorgio ◽  
Lorenzo Tofani ◽  
Antonio Frandi ◽  
Francesco Donati ◽  
...  

AbstractAlterations in cancer genomes originate from mutational processes taking place throughout oncogenesis and cancer progression. We show that likeliness and entropy are two properties of somatic mutations crucial in cancer evolution, as cancer-driver mutations stand out, with respect to both of these properties, as being distinct from the bulk of passenger mutations. Our analysis can identify novel cancer driver genes and differentiate between gain and loss of function mutations.


2021 ◽  
pp. canres.2039.2021
Author(s):  
Adar Yaacov ◽  
Oriya Vardi ◽  
Britny Blumenfeld ◽  
Avraham Greenberg ◽  
Dashiell J Massey ◽  
...  

2015 ◽  
Vol 7 (283) ◽  
pp. 283ra54-283ra54 ◽  
Author(s):  
Nicholas McGranahan ◽  
Francesco Favero ◽  
Elza C. de Bruin ◽  
Nicolai Juul Birkbak ◽  
Zoltan Szallasi ◽  
...  

Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal “actionable” mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)–AKT–mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS–MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified.


2018 ◽  
Author(s):  
Kadir C. Akdemir ◽  
Victoria T. Le ◽  
Sarah Killcoyne ◽  
Devin A. King ◽  
Ya-Ping Li ◽  
...  

AbstractSomatic mutations arise during the life history of a cell. Mutations occurring in cancer driver genes may ultimately lead to the development of clinically detectable disease. Nascent cancer lineages continue to acquire somatic mutations throughout the neoplastic process and during cancer evolution (Martincorena and Campbell, 2015). Extrinsic and endogenous mutagenic factors contribute to the accumulation of these somatic mutations (Zhang and Pellman, 2015). Understanding the underlying factors generating somatic mutations is crucial for developing potential preventive, therapeutic and clinical decisions. Earlier studies have revealed that DNA replication timing (Stamatoyannopoulos et al., 2009) and chromatin modifications (Schuster-Böckler and Lehner, 2012) are associated with variations in mutational density. What is unclear from these early studies, however, is whether all extrinsic and exogenous factors that drive somatic mutational processes share a similar relationship with chromatin state and structure. In order to understand the interplay between spatial genome organization and specific individual mutational processes, we report here a study of 3000 tumor-normal pair whole genome datasets from more than 40 different human cancer types. Our analyses revealed that different mutational processes lead to distinct somatic mutation distributions between chromatin folding domains. APOBEC- or MSI-related mutations are enriched in transcriptionally-active domains while mutations occurring due to tobacco-smoke, ultraviolet (UV) light exposure or a signature of unknown aetiology (signature 17) enrich predominantly in transcriptionally-inactive domains. Active mutational processes dictate the mutation distributions in cancer genomes, and we show that mutational distributions shift during cancer evolution upon mutational processes switch. Moreover, a dramatic instance of extreme chromatin structure in humans, that of the unique folding pattern of the inactive X-chromosome leads to distinct somatic mutation distribution on X chromosome in females compared to males in various cancer types. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation rate variations observed in human cancer.


2018 ◽  
Author(s):  
Ludmil B Alexandrov ◽  
Jaegil Kim ◽  
Nicholas J Haradhvala ◽  
Mi Ni Huang ◽  
Alvin WT Ng ◽  
...  

ABSTRACTSomatic mutations in cancer genomes are caused by multiple mutational processes each of which generates a characteristic mutational signature. Using 84,729,690 somatic mutations from 4,645 whole cancer genome and 19,184 exome sequences encompassing most cancer types we characterised 49 single base substitution, 11 doublet base substitution, four clustered base substitution, and 17 small insertion and deletion mutational signatures. The substantial dataset size compared to previous analyses enabled discovery of new signatures, separation of overlapping signatures and decomposition of signatures into components that may represent associated, but distinct, DNA damage, repair and/or replication mechanisms. Estimation of the contribution of each signature to the mutational catalogues of individual cancer genomes revealed associations with exogenous and endogenous exposures and defective DNA maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes contributing to the development of human cancer including a comprehensive reference set of mutational signatures in human cancer.


2021 ◽  
Vol 22 (9) ◽  
pp. 4959
Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


Sign in / Sign up

Export Citation Format

Share Document