mutational signatures
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 256)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Wenjing Zhang ◽  
Yujia Kong ◽  
Yuting Li ◽  
Fuyan Shi ◽  
Juncheng Lyu ◽  
...  

BackgroundImmune checkpoint inhibitor (ICI) therapy dramatically prolongs melanoma survival. Currently, the identified ICI markers are sometimes ineffective. The objective of this study was to identify novel determinants of ICI efficacy.MethodsWe comprehensively curated pretreatment somatic mutational profiles and clinical information from 631 melanoma patients who received blockade therapy of immune checkpoints (i.e., CTLA-4, PD-1/PD-L1, or a combination). Significantly mutated genes (SMGs), mutational signatures, and potential molecular subtypes were determined. Their association with ICI responses was assessed simultaneously.ResultsWe identified 27 SMGs, including four novel SMGs (COL3A1, NRAS, NARS2, and DCC) that are associated with ICI efficacy and well-known driver genes. COL3A1 mutations were associated with improved ICI overall survival (hazard ratio (HR): 0.64, 95% CI: 0.45–0.91, p = 0.012), whereas immune resistance was observed in patients with NRAS mutations (HR: 1.42, 95% CI: 1.10–1.82, p = 0.006). The presence of the tobacco smoking-related signature was significantly correlated with inferior prognoses (HR: 1.42, 95% CI: 1.11–1.82, p = 0.005). In addition, the signature resembling that of alkylating agents and a newly discovered signature both exhibited extended prognoses (both HR < 1, p < 0.05). Based on the activities of the extracted 6 mutational signatures, we identified one immune subtype that was significantly associated with better ICI outcomes (HR: 0.44, 95% CI: 0.23–0.87, p = 0.017).ConclusionWe uncovered several novel SMGs and re-annotated mutational signatures that are linked to immunotherapy response or resistance. In addition, an immune subtype was found to exhibit favorable prognoses. Further studies are required to validate these findings.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Constance H. Li ◽  
Syed Haider ◽  
Paul C. Boutros

AbstractCancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262495
Author(s):  
Aleksandra Karolak ◽  
Jurica Levatić ◽  
Fran Supek

The mutation risk of a DNA locus depends on its oligonucleotide context. In turn, mutability of oligonucleotides varies across individuals, due to exposure to mutagenic agents or due to variable efficiency and/or accuracy of DNA repair. Such variability is captured by mutational signatures, a mathematical construct obtained by a deconvolution of mutation frequency spectra across individuals. There is a need to enhance methods for inferring mutational signatures to make better use of sparse mutation data (e.g., resulting from exome sequencing of cancers), to facilitate insight into underlying biological mechanisms, and to provide more accurate mutation rate baselines for inferring positive and negative selection. We propose a conceptualization of mutational signatures that represents oligonucleotides via descriptors of DNA conformation: base pair, base pair step, and minor groove width parameters. We demonstrate how such DNA structural parameters can accurately predict mutation occurrence due to DNA repair failures or due to exposure to diverse mutagens such as radiation, chemical exposure, and the APOBEC cytosine deaminase enzymes. Furthermore, the mutation frequency of DNA oligomers classed by structural features can accurately capture systematic variability in mutagenesis of >1,000 tumors originating from diverse human tissues. A nonnegative matrix factorization was applied to mutation spectra stratified by DNA structural features, thereby extracting novel mutational signatures. Moreover, many of the known trinucleotide signatures were associated with an additional spectrum in the DNA structural descriptor space, which may aid interpretation and provide mechanistic insight. Overall, we suggest that the power of DNA sequence motif-based mutational signature analysis can be enhanced by drawing on DNA shape features.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
John K. L. Wong ◽  
Christian Aichmüller ◽  
Markus Schulze ◽  
Mario Hlevnjak ◽  
Shaymaa Elgaafary ◽  
...  

AbstractCancer driving mutations are difficult to identify especially in the non-coding part of the genome. Here, we present sigDriver, an algorithm dedicated to call driver mutations. Using 3813 whole-genome sequenced tumors from International Cancer Genome Consortium, The Cancer Genome Atlas Program, and a childhood pan-cancer cohort, we employ mutational signatures based on single-base substitution in the context of tri- and penta-nucleotide motifs for hotspot discovery. Knowledge-based annotations on mutational hotspots reveal enrichment in coding regions and regulatory elements for 6 mutational signatures, including APOBEC and somatic hypermutation signatures. APOBEC activity is associated with 32 hotspots of which 11 are known and 11 are putative regulatory drivers. Somatic single nucleotide variants clusters detected at hypermutation-associated hotspots are distinct from translocation or gene amplifications. Patients carrying APOBEC induced PIK3CA driver mutations show lower occurrence of signature SBS39. In summary, sigDriver uncovers mutational processes associated with known and putative tumor drivers and hotspots particularly in the non-coding regions of the genome.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Wu ◽  
Ellora Hui Zhen Chua ◽  
Alvin Wei Tian Ng ◽  
Arnoud Boot ◽  
Steven G. Rozen

AbstractMutational signatures are characteristic patterns of mutations generated by exogenous mutagens or by endogenous mutational processes. Mutational signatures are important for research into DNA damage and repair, aging, cancer biology, genetic toxicology, and epidemiology. Unsupervised learning can infer mutational signatures from the somatic mutations in large numbers of tumors, and separating correlated signatures is a notable challenge for this task. To investigate which methods can best meet this challenge, we assessed 18 computational methods for inferring mutational signatures on 20 synthetic data sets that incorporated varying degrees of correlated activity of two common mutational signatures. Performance varied widely, and four methods noticeably outperformed the others: hdp (based on hierarchical Dirichlet processes), SigProExtractor (based on multiple non-negative matrix factorizations over resampled data), TCSM (based on an approach used in document topic analysis), and mutSpec.NMF (also based on non-negative matrix factorization). The results underscored the complexities of mutational signature extraction, including the importance and difficulty of determining the correct number of signatures and the importance of hyperparameters. Our findings indicate directions for improvement of the software and show a need for care when interpreting results from any of these methods, including the need for assessing sensitivity of the results to input parameters.


Author(s):  
Nicholas Franzese ◽  
Jason Fan ◽  
Roded Sharan ◽  
Mark D.M. Leiserson

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259185
Author(s):  
Claudia Perne ◽  
Sophia Peters ◽  
Maria Cartolano ◽  
Sukanya Horpaopan ◽  
Christina Grimm ◽  
...  

The spectrum of somatic genetic variation in colorectal adenomas caused by biallelic pathogenic germline variants in the MSH3 gene, was comprehensively analysed to characterise mutational signatures and identify potential driver genes and pathways of MSH3-related tumourigenesis. Three patients from two families with MSH3-associated polyposis were included. Whole exome sequencing of nine adenomas and matched normal tissue was performed. The amount of somatic variants in the MSH3-deficient adenomas and the pattern of single nucleotide variants (SNVs) was similar to sporadic adenomas, whereas the fraction of small insertions/deletions (indels) (21–42% of all small variants) was significantly higher. Interestingly, pathogenic somatic APC variants were found in all but one adenoma. The vast majority (12/13) of these were di-, tetra-, or penta-base pair (bp) deletions. The fraction of APC indels was significantly higher than that reported in patients with familial adenomatous polyposis (FAP) (p < 0.01) or in sporadic adenomas (p < 0.0001). In MSH3-deficient adenomas, the occurrence of APC indels in a repetitive sequence context was significantly higher than in FAP patients (p < 0.01). In addition, the MSH3-deficient adenomas harboured one to five (recurrent) somatic variants in 13 established or candidate driver genes for early colorectal carcinogenesis, including ACVR2A and ARID genes. Our data suggest that MSH3-related colorectal carcinogenesis seems to follow the classical APC-driven pathway. In line with the specific function of MSH3 in the mismatch repair (MMR) system, we identified a characteristic APC mutational pattern in MSH3-deficient adenomas, and confirmed further driver genes for colorectal tumourigenesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guus R. M. van den Heuvel ◽  
Leonie I. Kroeze ◽  
Marjolijn J. L. Ligtenberg ◽  
Katrien Grünberg ◽  
Erik A. M. Jansen ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer death worldwide. With the growing number of targeted therapies and the introduction of immuno-oncology (IO), personalized medicine has become standard of care in patients with metastatic disease. The development of predictive and prognostic biomarkers is of great importance. Mutational signatures harbor potential clinical value as predictors of therapy response in cancer. Here we set out to investigate particular mutational processes by assessing mutational signatures and associations with clinical features, tumor mutational burden (TMB) and targetable mutations. Methods In this retrospective study, we studied tumor DNA from patients with non-small cell lung cancer (NSCLC) irrespective of stage. The samples were sequenced using a 2 megabase (Mb) gene panel. On each sample TMB was determined and defined as the total number of single nucleotide mutations per Mb (mut/Mb) including non-synonymous mutations. Mutational signature profiling was performed on tumor samples in which at least 30 somatic single base substitutions (SBS) were detected. Results In total 195 samples were sequenced. Median total TMB was 10.3 mut/Mb (range 0–109.3). Mutational signatures were evaluated in 76 tumor samples (39%; median TMB 15.2 mut/Mb). SBS signature 4 (SBS4), associated with tobacco smoking, was prominently present in 25 of 76 samples (33%). SBS2 and/or SBS13, both associated with activity of the AID/APOBEC family of cytidine deaminases, were observed in 11 of 76 samples (14%). SBS4 was significantly more present in early stages (I and II) versus advanced stages (III and IV; P = .005). Conclusion In a large proportion of NSCLC patients tissue panel sequencing with a 2 Mb panel can be used to determine the mutational signatures. In general, mutational signature SBS4 was more often found in early versus advanced stages of NSCLC. Further studies are needed to determine the clinical utility of mutational signature analyses.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nicole E. Mealey ◽  
Dylan E. O’Sullivan ◽  
Cheryl E. Peters ◽  
Daniel Y. C. Heng ◽  
Darren R. Brenner

Abstract Background Incidence of testicular cancer is highest among young adults and has been increasing dramatically for men born since 1945. This study aimed to elucidate the factors driving this trend by investigating differences in mutational signatures by age of onset. Methods We retrieved somatic variant and clinical data pertaining to 135 testicular tumors from The Cancer Genome Atlas. We compared mutational load, prevalence of specific mutated genes, mutation types, and mutational signatures between age of onset groups (< 30 years, 30–39 years, ≥ 40 years) after adjusting for subtype. A recursively partitioned mixture model was utilized to characterize combinations of signatures among the young-onset cases. Results Mutational load was significantly higher among older-onset tumors (p < 0.05). There were no highly prevalent driver mutations among young-onset tumors. Mutated genes and types of nucleotide mutations were not significantly different by age group (p > 0.05). Signatures 1, 8 and 29 were more common among young-onset tumors, while signatures 11 and 16 had higher prevalence among older-onset tumors (p < 0.05). Among young-onset tumors, clustering of signatures resulted in four distinct tumor classes. Conclusions Signature contributions differ by age with signatures 1, 8 and 29 were more common among younger-onset tumors. While these signatures are connected with endogenous deamination of 5-methylcytosine, late replication errors and chewing tobacco, respectively, additional research is needed to further elucidate the etiology of young-onset testicular cancer. Large studies of mutational signatures among young-onset patients are required to understand epidemiologic trends as well as inform targeted prevention and treatment strategies.


2021 ◽  
Author(s):  
Evan Witt ◽  
Christopher B Langer ◽  
Li Zhao

Aging is a complex biological process which is accompanied by changes in gene expression and mutational load. In many species including humans, old fathers pass on more paternally-derived de novo mutations, however, the cellular basis and cell types driving this pattern are still unclear. To understand the root causes of this phenomenon, we performed single-cell RNA-sequencing (scRNA-seq) on testes from young and old male Drosophila, as well as genomic sequencing (DNA-seq) on somatic tissue from the same flies. We found that early germ cells from old and young flies have similar mutational loads, but older flies are less able to remove mutations during spermatogenesis. This indicates that germline mutations arise from primarily non-replicative factors, and that the increased mutational load of older males is due to differences in genome maintenance activities such as repairs to DNA damage. We also found that T>A mutations are enriched in older flies, and transcription-related enrichment terms are depleted in older males. Early spermatogenesis-enriched genes have lower dN/dS than late spermatogenesis-enriched genes, supporting the hypothesis that late spermatogenesis is the source of evolutionary innovation. This transcriptional disruption is reflected in the decreased expression of genome maintenance genes in early germ cells of older flies, as well as potentially aberrant transcription of transposable elements in the aging germline. Our results provide novel insights into the transcriptional and mutational signatures of the male germline.


Sign in / Sign up

Export Citation Format

Share Document