scholarly journals Comparative analyses and phylogenetic relationships of 15 Trapa (Trapaceae) species based on Complete Chloroplast Genomes

2021 ◽  
Author(s):  
xiangrong Fan ◽  
Wuchao Wang ◽  
Godfrey K. Wagutu ◽  
Wei Li ◽  
Xiuling Li ◽  
...  

Trapa L. is floating-leaved aquatic plants with important economic and ecological values. However, species identification and phylogenetic relationship are still unresolved for Trapa. In this study, complete chloroplast genomes of 13 Trapa species/taxa were sequenced and annotated. Combined with released sequences of the other two species, comparative analysis of cp genomes was first performed on the 15 Trapa species/taxa. The 15 cp genomes exhibited quadripartite structures with medium size of 155, 453-155, 559 bp. IR/SC junctions were conservative with no obvious change found. Long repetitive repeats and SSRs were mostly detected in the intergenic and LSC regions, providing useful plastid markers for species and relationship identification. Three phylogenetic analyses (MP, ML and BI) consistently showed two clusters within Trapa, including large- and small-seed species/taxa, respectively. This study provided the baseline information for phylogeography of Trapa, which would facilitate the management and utilization of genetic resources of the genus.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bobby Lim-Ho Kong ◽  
Hyun-Seung Park ◽  
Tai-Wai David Lau ◽  
Zhixiu Lin ◽  
Tae-Jin Yang ◽  
...  

AbstractIlex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.


Genome ◽  
2020 ◽  
Vol 63 (7) ◽  
pp. 337-348
Author(s):  
Guanglong Hu ◽  
Lili Cheng ◽  
Wugang Huang ◽  
Qingchang Cao ◽  
Lei Zhou ◽  
...  

Coryloideae is a subfamily in the family Betulaceae consisting of four extant genera: Carpinus, Corylus, Ostrya, and Ostryopsis. We sequenced the plastomes of six species of Corylus and one species of Ostryopsis for comparative and phylogenetic analyses. The plastomes are 159–160 kb long and possess typical quadripartite cp architecture. The plastomes show moderate divergence and conserved arrangement. Five mutational hotspots were identified by comparing the plastomes of seven species of Coryloideae: trnG-atpA, trnF-ndhJ, accD-psaI, ndhF-ccsA, and ycf1. We assembled the most complete phylogenomic tree for the family Betulaceae using 68 plastomes. Our cp genomic sequence phylogenetic analyses placed Carpinus, Ostrya, and Ostryopsis in a clade together and left Corylus in a separate clade. Within the genus Corylus, these analyses indicate the existence of five subclades reflecting the phylogeographical relationships among the species. The data offer significant genetic information for the identification of species of the Coryloideae, taxonomic and phylogenetic studies, and molecular breeding.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin Xu ◽  
Boshun Xia ◽  
Xinwei Li

AbstractThe six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.


2021 ◽  
Author(s):  
Mahtab Moghaddam ◽  
Atsushi Ohta ◽  
Motoki Shimizu ◽  
Ryohei Terauchi ◽  
Shahrokh Kazempour-Osaloo

Abstract Plastid genome sequences provide valuable markers for surveying the evolutionary relationships and population genetics of plant species. In the present study, the complete plastid genome of Onobrychis gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 123,645 bp in length and included a large single-copy (LSC) region of 81,034 bp, a small single-copy (SSC) region of 13,788 bp and one copy of the inverted repeat (IRb) of 28,823 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 89 simple sequence repeats (SSRs) and 28 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as molecular markers for resolving phylogenetic relationships and species identification. IRLC plastid genomes also showed multiple gene losses and inversions. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 861
Author(s):  
Huijuan Zhou ◽  
Xiaoxiao Gao ◽  
Keith Woeste ◽  
Peng Zhao ◽  
Shuoxin Zhang

Chloroplast (cp) DNA genomes are traditional workhorses for studying the evolution of species and reconstructing phylogenetic relationships in plants. Species of the genus Castanea (chestnuts and chinquapins) are valued as a source of nuts and timber wherever they grow, and chestnut species hybrids are common. We compared the cp genomes of C. mollissima, C. seguinii, C. henryi, and C. pumila. These cp genomes ranged from 160,805 bp to 161,010 bp in length, comprising a pair of inverted repeat (IR) regions (25,685 to 25,701 bp) separated by a large single-copy (LSC) region (90,440 to 90,560 bp) and a small single-copy (SSC) region (18,970 to 19,049 bp). Each cp genome encoded the same 113 genes; 82–83 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. There were 18 duplicated genes in the IRs. Comparative analysis of cp genomes revealed that rpl22 was absent in all analyzed species, and the gene ycf1 has been pseudo-genized in all Chinese chestnuts except C. pumlia. We analyzed the repeats and nucleotide substitutions in these plastomes and detected several highly variable regions. The phylogenetic analyses based on plastomes confirmed the monophyly of Castanea species.


Sign in / Sign up

Export Citation Format

Share Document