scholarly journals Repopulation of a 3D-simulated periapical lesion cavity with triggered osteoblastic-differentiated dental pulp stem cell spheroids.

2021 ◽  
Author(s):  
Vitor L Ribeiro ◽  
Janaina A Dernowsek ◽  
Roger R Fernandes ◽  
Dimitrius Pitol ◽  
Joao P Issa ◽  
...  

We established a proof of concept model system for the biological repair of periapical lesions using stem cell spheroids. A mesenchymal stem cell line isolated from the dental pulp of deciduous teeth (shed cells) was cultured in a 2D monolayer and then in 3D multicellular spheroids. An image of a periapical lesion of an upper lateral incisor tooth was obtained by computed micro tomography, which was used as a model for photopolymer resin 3D printing to generate a negative frame of the lesion. The negative model served to prepare a positive model of the periapical lesion cavity in an agarose gel. Shed cells cultured in monolayers or as spheroids were seeded in the positive lesion mold before or after osteoblastic differentiation. The results showed that compared to cells cultured in monolayers, the spheroids featured uniform cellularity and had a greater viability within the lesion cavity, accompanied by a temporal reduction in the expression of mRNAs typically expressed by stem cells (Cd13, Cd29, Cd44, Cd73, and Cd90). Concomitantly, there was an increase in the expression of protein markers that characterize osteoblastic differentiation (RUNX2, ALP, and BGLAP). These results provide a new perspective for regenerative endodontics with the use of spheroids prepared with shed cells to repair periapical lesions.

2020 ◽  
Vol 100 (1) ◽  
pp. 90-97
Author(s):  
R.L. Yang ◽  
H.M. Huang ◽  
C.S. Han ◽  
S.J. Cui ◽  
Y.K. Zhou ◽  
...  

To investigate the characteristics and molecular events of dental pulp stem cells (DPSCs) for tissue regeneration with aging, we isolated and analyzed the stem cells from human exfoliated deciduous teeth (SHED) and permanent teeth of young (Y-DPSCs) and old (A-DPSCs) adults. Results showed that the stemness and osteogenic differentiation capacity of DPSCs decreased with aging. The RNA sequencing results showed that glycine, serine, and threonine metabolism was one of the most enriched gene clusters among SHED, Y-DPSCs, and A-DPSCs, according to analysis based on the Kyoto Encyclopedia of Genes and Genomes. The expression of serine metabolism–related enzymes phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate (PHGDH) decreased in A-DPSCs and provided less methyl donor S-adenosylmethionine (SAM) for DNA methylation, leading to the hypomethylation of the senescence marker p16 (CDNK2A). Furthermore, the proliferation and differentiation capacity of Y-DPSCs and SHED decreased after PHGDH siRNA treatment, which reduced the level of SAM. Convincingly, the ratios of PSAT1-, PHGDH-, or proliferating cell nuclear antigen–positive cells in the dental pulp of old permanent teeth were less than those in the dental pulp of deciduous teeth and young permanent teeth. In summary, the stemness and differentiation capacity of DPSCs decreased with aging. The decreased serine metabolism in A-DPSCs upregulated the expression of p16 via attenuating its DNA methylation, resulting in DPSC aging. Our finding indicated that serine metabolism and 1 carbon unit participated in stem cell aging, which provided new direction for stem cell aging study and intervention.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51777 ◽  
Author(s):  
Lan Ma ◽  
Yusuke Makino ◽  
Haruyoshi Yamaza ◽  
Kentaro Akiyama ◽  
Yoshihiro Hoshino ◽  
...  

2010 ◽  
Vol 36 (7) ◽  
pp. 1139-1144 ◽  
Author(s):  
Thais Miyuki Hirata ◽  
Nikolay Ishkitiev ◽  
Ken Yaegaki ◽  
Bogdan Calenic ◽  
Hiroshi Ishikawa ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 204173141770442 ◽  
Author(s):  
Natasha S Lewis ◽  
Emily EL Lewis ◽  
Margaret Mullin ◽  
Helen Wheadon ◽  
Matthew J Dalby ◽  
...  

Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies.


2014 ◽  
Vol 71 (8) ◽  
pp. 735-741 ◽  
Author(s):  
Jasmina Debeljak-Martacic ◽  
Jelena Francuski ◽  
Tijana Luzajic ◽  
Nemanja Vukovic ◽  
Slavko Mojsilovic ◽  
...  

Background/Aim. The last decade has been profoundly marked by persistent attempts to use ex vivo expanded and manipulated mesenchymal stem cells (MSCs), as a tool in different types of regenerative therapy. In the present study we described immunophenotype and the proliferative and differentiation potential of cells isolated from pulp remnants of exfoliated deciduous teeth in the final phase of root resorption. Methods. The initial adherent cell population from five donors was obtained by the outgrowth method. Colony forming unit-fibroblast (CFU-F) assay was performed in passage one. Cell expansion was performed until passage three and all tests were done until passage eight. Cells were labeled for early mesenchymal stem cells markers and analysis have been done using flow cytometry. The proliferative potential was assessed by cell counting in defined time points and population doubling time was calculated. Commercial media were used to induce osteoblastic, chondrogenic and adipogenic differentiation. Cytology and histology methods were used for analysis of differentiated cell morphology and extracellular matrix characteristics. Results. According to immunophenotype analyses all undifferentiated cells were positive for the mesenchymal stem cell markers: CD29 and CD73. Some cells expressed CD146 and CD106. The hematopoietic cell marker, CD34, was not detected. In passage one, incidence of CFU-F was 4.7 ? 0.5/100. Population doubling time did not change significantly during cell subcultivation and was in average 25 h. After induction of differentiation, the multicolony derived cell population had a tri-lineage differentiation potential, since mineralized matrix, cartilage-like tissue and adipocytes were successfully formed after three weeks of incubation. Conclusion. Altogether, these data suggest that remnants of deciduous teeth dental pulp contained cell populations with mesenchymal stem cell-like features, with a high proliferation and trilineage differentiation potential and that these cultures are suitable for further in vitro evaluation of cell based therapies.


2018 ◽  
Vol 98 (1) ◽  
pp. 27-35 ◽  
Author(s):  
B. Sui ◽  
C. Chen ◽  
X. Kou ◽  
B. Li ◽  
K. Xuan ◽  
...  

The preservation of vital dental pulp with vasculature and nerve components remains one of the most significant challenges in modern dentistry. Due to the immense potential for neurovascularization, mesenchymal stem cell (MSC) transplantation has shown emerging promise in regenerative medicine and dental translational practice. Actually, pulp mesenchymal stem cells, including postnatal dental pulp stem cells (from permanent teeth) and stem cells from human exfoliated deciduous teeth, possess unique properties based on their origins from neural crest or glial cells. Furthermore, they reside in a neurovascular niche and have the potential for neurogenesis, angiogenesis, and neurovascular inductive activity. According to current pulp regeneration strategies, pulp stem cell–mediated approaches to regeneration have demonstrated convincing evidence that they can rebuild the complex histologic structure of native pulp in situ with highly organized physiologic patterns or even achieve de novo regeneration of complete dental pulp tissues. More importantly, recent clinical studies emphasized in situ neurovascularization outcomes in successful regeneration of vitalized pulp via pulp stem cell transplantation. In this review, we summarize recent breakthroughs in pulp stem cell–mediated pulp regeneration, emphasizing the crucial achievement of neurovascularization. This functional pulp regeneration represents an innovative and promising approach for future regenerative endodontics.


2010 ◽  
Vol 53 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Jakub Suchánek ◽  
Benjamín Víšek ◽  
Tomáš Soukup ◽  
Sally Kamal El-Din Mohamed ◽  
Romana Ivančaková ◽  
...  

Aims: Our aims were to isolate stem cells from human exfoliated deciduous teeth (SHED), to cultivate them in vitro and to investigate their basic biological properties, phenotype and to compare our findings with dental pulp stem cells (DPSC) isolated from permanent teeth. Methods: Dental pulp was gently evacuated from exfoliated teeth. After enzymatic dissociation of dental pulp, SHED were cultivated in modified cultivation media for mesenchymal adult progenitor cells containing 2 % FCS and supplemented with growth factors and insulin, transferrin, sodium (ITS) supplement. Cell viability and other biological properties were examined using a Vi-Cell analyzer and a Z2-Counter. DNA analyses and phenotyping were performed with flow cytometry. Results: We were able to cultivate SHED over 45 population doublings. Our results showed that SHED cultivated under same conditions as DPSC had longer average population doubling time (41.3 hrs for SHED vs. 24.5 hrs for DPSC). Phenotypic comparison of cultivated SHED to that of cultivated DPSC showed differential expression CD29, CD44, CD71, CD117, CD166. During long-term cultivation, SHED did not showed any signs of degeneration or spontaneous differentiation. Conclusions: We isolated stem cells from exfoliated teeth. In comparison to DPSC, SHED proliferation rate was about 50% slower, and SHED showed slightly different phenotype. These cells may be extremely useful for stem cell tissue banking, further stem cell research and future therapeutic applications.


2011 ◽  
Vol 63 (4) ◽  
pp. 933-942 ◽  
Author(s):  
N. Nikolic ◽  
A. Krstic ◽  
D. Trivanovic ◽  
S. Mojsilovic ◽  
J. Kocic ◽  
...  

In the present study we have isolated and identified mesenchymal stem cells (MSCs) from the exfoliated deciduous teeth dental pulp (DP-MSCs), as plastic-adherent, spindle-shaped cells with a high proliferative potential. Immunophenotype analyses revealed that DP-MSCs were positive for mesenchymal cell markers (CD90, CD44, CD105, STRO-1, vimentin and ?-SMA), and negative for hematopoietic stem cell markers (CD11b, CD33, CD34, CD45, CD235a). DPMSCs were also capable of differentiating into adipogenic, chondrogenic, myogenic and osteogenic lineages, fulfilling the functional criterion for their characterization. These results demonstrate that DP-MSCs offer a valuable, readily accessible source to obtain and store adult stem cells for future use.


Sign in / Sign up

Export Citation Format

Share Document