cell aging
Recently Published Documents


TOTAL DOCUMENTS

757
(FIVE YEARS 263)

H-INDEX

67
(FIVE YEARS 13)

Author(s):  
Roby Gauthier ◽  
Aidan Luscombe ◽  
Toby Bond ◽  
Michael Bauer ◽  
Michel Johnson ◽  
...  

Abstract Lithium-ion cells testing under different state of charge ranges, C-rates and cycling temperature have different degrees of lithium inventory loss, impedance growth and active mass loss. Here, a large matrix of polycrystalline NMC622/natural graphite Li-ion pouch cells were tested with seven different state of charge ranges (0-25, 0-50, 0-75, 0-100, 75-100, 50-100 and 25-100%), three different C-rates and at two temperatures. First, capacity fade was compared to a model developed by Deshpande and Bernardi. Second, after 2.5 years of cycling, detailed analysis by dV/dQ analysis, lithium-ion differential thermal analysis, volume expansion by Archimedes’ principle, electrode stack growth, ultrasonic transmissivity and x-ray computed tomography were undertaken. These measurements enabled us to develop a complete picture of cell aging for these cells. This then led to an empirical predictive model for cell capacity loss versus SOC range and calendar age. Although these particular cells exhibited substantial positive electrode active mass loss, this did not play a role in capacity retention because the cells were anode limited during full discharge under all the tests carried out here. However, the positive electrode mass loss was strongly coupled to positive electrode swelling and electrolyte “unwetting” that would eventually cause dramatic failure.


Author(s):  
Liangyu Mi ◽  
Junping Hu ◽  
Na Li ◽  
Jinfang Gao ◽  
Rongxiu Huo ◽  
...  

AbstractStem cells have self-renewal ability and multi-directional differentiation potential. They have tissue repair capabilities and are essential for maintaining the tissue homeostasis. The depletion of stem cells is closely related to the occurrence of body aging and aging-related diseases. Therefore, revealing the molecular mechanisms of stem cell aging will set new directions for the therapeutic application of stem cells, the study of aging mechanisms, and the prevention and treatment of aging-related diseases. This review comprehensively describes the molecular mechanisms related to stem cell aging and provides the basis for further investigations aimed at developing new anti-stem cell aging strategies and promoting the clinical application of stem cells.


2021 ◽  
Vol 13 (4) ◽  
pp. 337-49
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Aging tissues lose their homeostatic and regenerative capacities, which has been linked to the degeneration of the stem cells such as the tissue-specific stem cells, the stem cell niches, and systemic cues that regulate stem cell activity.CONTENT: The maintenance of tissue homeostatic and regeneration dependent on its tissue-specific stem cells, that —long-lived cells with the ability to self-renew and differentiate into mature cells. Understanding the molecular mechanisms that governs stem cell survival, self-renewal, quiescence, proliferation, and commitment to specific differentiated cell lineages is critical for identifying the drivers and effectors of age-associated stem cell failure. Such understanding will be critical for the development of therapeutic approaches that can decrease, and possibly reverse and repair the age-related degenerative process in aging tissues.SUMMARY: The exact mechanisms and reasons of aging process were not fully elucidated until now. Stem cells is one of the keys for maintaining tissues heath and understanding how stem cell decline with age will give us opportunities to find strategy in increasing somatic stem cells regenerative capacity and delay the aging process.KEYWORDS: adult stem cell, aging, epigenetic, metabolism, quiescence, senescence


2021 ◽  
pp. 905-911
Author(s):  
R. Endlicher ◽  
Z. Drahota ◽  
O. Kučera ◽  
Z. Červinková

Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3570
Author(s):  
Qin-Qi Wang ◽  
Gang Yin ◽  
Jiang-Rong Huang ◽  
Shi-Jun Xi ◽  
Feng Qian ◽  
...  

Population aging is occurring rapidly worldwide, challenging the global economy and healthcare services. Brain aging is a significant contributor to various age-related neurological and neuropsychological disorders, including Alzheimer’s disease and Parkinson’s disease. Several extrinsic factors, such as exposure to ionizing radiation, can accelerate senescence. Multiple human and animal studies have reported that exposure to ionizing radiation can have varied effects on organ aging and lead to the prolongation or shortening of life span depending on the radiation dose or dose rate. This paper reviews the effects of radiation on the aging of different types of brain cells, including neurons, microglia, astrocytes, and cerebral endothelial cells. Further, the relevant molecular mechanisms are discussed. Overall, this review highlights how radiation-induced senescence in different cell types may lead to brain aging, which could result in the development of various neurological and neuropsychological disorders. Therefore, treatment targeting radiation-induced oxidative stress and neuroinflammation may prevent radiation-induced brain aging and the neurological and neuropsychological disorders it may cause.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6227
Author(s):  
Oana-Maria Thoma ◽  
Markus F. Neurath ◽  
Maximilian J. Waldner

Colorectal cancer (CRC) continues to be one of the most frequently diagnosed types of cancers in the world. CRC is considered to affect mostly elderly patients, and the number of diagnosed cases increases with age. Even though general screening improves outcomes, the overall survival and recurrence-free CRC rates in aged individuals are highly dependent on their history of comorbidities. Furthermore, aging is also known to alter the immune system, and especially the adaptive immune T cells. Many studies have emphasized the importance of T cell responses to CRC. Therefore, understanding how age-related changes affect the outcome in CRC patients is crucial. This review focuses on what is so far known about age-related T cell dysfunction in elderly patients with colorectal cancer and how aged T cells can mediate its development. Last, this study describes the advances in basic animal models that have potential to be used to elucidate the role of aged T cells in CRC.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jun Jin ◽  
Huimin Zhang ◽  
Cornelia M. Weyand ◽  
Jorg J. Goronzy

Lysosomes were initially recognized as degradation centers that regulate digestion and recycling of cellular waste. More recent studies document that the lysosome is an important signaling hub that regulates cell metabolism. Our knowledge of the role of lysosomes in immunity is mostly derived from innate immune cells, especially lysosomal degradation-specialized cells such as macrophages and dendritic cells. Their function in adaptive immunity is less understood. However, with the recent emphasis on metabolic regulation of T cell differentiation, lysosomes are entering center stage in T cell immunology. In this review, we will focus on the role of lysosomes in adaptive immunity and discuss recent findings on lysosomal regulation of T cell immune responses and lysosomal dysfunction in T cell aging.


Sign in / Sign up

Export Citation Format

Share Document