scholarly journals Predictive modelling of highly multiplexed tumour tissue images by graph neural networks

Author(s):  
Paula Martin-Gonzalez ◽  
Mireia Crispin-Ortuzar ◽  
Florian Markowetz

The progression and treatment response of cancer largely depends on the complex tissue structure that surrounds cancer cells in a tumour, known as the tumour microenvironment (TME). Recent technical advances have led to the development of highly multiplexed imaging techniques such as Imaging Mass Cytometry (IMC), which capture the complexity of the TME by producing spatial tissue maps of dozens of proteins. Combining these multidimensional cell phenotypes with their spatial organization to predict clinically relevant information is a challenging computational task and so far no method has addressed it directly. Here, we propose and evaluate MULTIPLAI, a novel framework to predict clinical biomarkers from IMC data. The method relies on attention-based graph neural networks (GNNs) that integrate both the phenotypic and spatial dimensions of IMC images. In this proof-of-concept study we used MULTIPLAI to predict oestrogen receptor (ER) status, a key clinical variable for breast cancer patients. We trained different architectures of our framework on 240 samples and benchmarked against graph learning via graph kernels. Propagation Attribute graph kernels achieved a class-balanced accuracy of 66.18\% in the development set (N=104) while GNNs achieved a class-balanced accuracy of 90.00\% on the same set when using the best combination of graph convolution and pooling layers. We further validated this architecture in internal (N=112) and external test sets from different institutions (N=281 and N=350), demonstrating the generalizability of the method. Our results suggest that MULTIPLAI captures important TME features with clinical importance. This is the first application of GNNs to this type of data and opens up new opportunities for predictive modelling of highly multiplexed images.

2021 ◽  
pp. 139-150
Author(s):  
Giannis Nikolentzos ◽  
George Panagopoulos ◽  
Michalis Vazirgiannis

2021 ◽  
pp. 98-107
Author(s):  
Paula Martin-Gonzalez ◽  
Mireia Crispin-Ortuzar ◽  
Florian Markowetz

2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document