scholarly journals Teaching free energy calculations to learn from experimental data

2021 ◽  
Author(s):  
Marcus Wieder ◽  
Josh Fass ◽  
John D. Chodera

AbstractAlchemical free energy calculations are an important tool in the computational chemistry tool-box, enabling the efficient calculation of quantities critical for drug discovery such as ligand binding affinities, selectivities, and partition coefficients. However, modern alchemical free energy calculations suffer from three significant limitations: (1) modern molecular mechanics force fields are limited in their ability to model complex molecular interactions, (2) classical force fields are unable to treat phenomena that involve rearrangements of chemical bonds, and (3) these calculations are unable to easily learn to improve their performance if readily-available experimental data is available. Here, we show how all three limitations can be overcome through the use of quantum machine learning (QML) potentials capable of accurately modeling quantum chemical energetics even when chemical bonds are made and broken. Because these potentials are based on mathematically convenient deep learning architectures instead of traditional quantum chemical formulations, QML simulations can be run at a fraction of the cost of quantum chemical simulations using modern graphics processing units (GPUs) and machine learning frameworks. We demonstrate that alchemical free energy calculations in explicit solvent are especially simple to implement using QML potentials because these potentials lack singularities and other pathologies typical of molecular mechanics potentials, and that alchemical free energy calculations are highly effective even when bonds are broken or made. Finally, we show how a limited number of experimental free energy measurements can be used to significantly improve the accuracy of computed free energies for unrelated compounds with no significant generalization gap. We illustrate these concepts on the prediction of aqueous tautomer free energies (related to tautomer ratios), which are highly relevant to drug discovery in that more than a quarter of all approved drugs exist as a mixture of tautomers.

2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2020 ◽  
Author(s):  
Jenke Scheen ◽  
Wilson Wu ◽  
Antonia S. J. S. Mey ◽  
Paolo Tosco ◽  
Mark Mackey ◽  
...  

A methodology that combines alchemical free energy calculations (FEP) with machine learning (ML) has been developed to compute accurate absolute hydration free energies. The hybrid FEP/ML methodology was trained on a subset of the FreeSolv database, and retrospectively shown to outperform most submissions from the SAMPL4 competition. Compared to pure machine-learning approaches, FEP/ML yields more precise estimates of free energies of hydration, and requires a fraction of the training set size to outperform standalone FEP calculations. The ML-derived correction terms are further shown to be transferable to a range of related FEP simulation protocols. The approach may be used to inexpensively improve the accuracy of FEP calculations, and to flag molecules which will benefit the most from bespoke forcefield parameterisation efforts.


2018 ◽  
Author(s):  
Hannes H. Loeffler ◽  
Stefano Bosisio ◽  
Guilherme Duarte Ramos Matos ◽  
Donghyuk Suh ◽  
Benoît Roux ◽  
...  

<div> <div> <div> <p>Alchemical free energy calculations are an increasingly important modern simulation technique. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD include support for the method. Implementation details vary among those codes but users expect reliability and reproducibility, i.e. for a given molec- ular model and set of forcefield parameters, comparable free energy should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counter- part. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with aforementioned codes. Achieving this level of reproducibility requires considerable attention to detail and package–specific simulation protocols, and no uni- versally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.</p></div></div></div>


2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2018 ◽  
Author(s):  
Hannes H. Loeffler ◽  
Stefano Bosisio ◽  
Guilherme Duarte Ramos Matos ◽  
Donghyuk Suh ◽  
Benoît Roux ◽  
...  

<div> <div> <div> <p>Alchemical free energy calculations are an increasingly important modern simulation technique. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD include support for the method. Implementation details vary among those codes but users expect reliability and reproducibility, i.e. for a given molec- ular model and set of forcefield parameters, comparable free energy should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counter- part. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with aforementioned codes. Achieving this level of reproducibility requires considerable attention to detail and package–specific simulation protocols, and no uni- versally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.</p></div></div></div>


Author(s):  
Jenke Scheen ◽  
Wilson Wu ◽  
Antonia S. J. S. Mey ◽  
Paolo Tosco ◽  
Mark Mackey ◽  
...  

A methodology that combines alchemical free energy calculations (FEP) with machine learning (ML) has been developed to compute accurate absolute hydration free energies. The hybrid FEP/ML methodology was trained on a subset of the FreeSolv database, and retrospectively shown to outperform most submissions from the SAMPL4 competition. Compared to pure machine-learning approaches, FEP/ML yields more precise estimates of free energies of hydration, and requires a fraction of the training set size to outperform standalone FEP calculations. The ML-derived correction terms are further shown to be transferable to a range of related FEP simulation protocols. The approach may be used to inexpensively improve the accuracy of FEP calculations, and to flag molecules which will benefit the most from bespoke forcefield parameterisation efforts.


2020 ◽  
Author(s):  
Dominic A. Rufa ◽  
Hannah E. Bruce Macdonald ◽  
Josh Fass ◽  
Marcus Wieder ◽  
Patrick B. Grinaway ◽  
...  

AbstractAlchemical free energy methods with molecular mechanics (MM) force fields are now widely used in the prioritization of small molecules for synthesis in structure-enabled drug discovery projects because of their ability to deliver 1–2 kcal mol−1 accuracy in well-behaved protein-ligand systems. Surpassing this accuracy limit would significantly reduce the number of compounds that must be synthesized to achieve desired potencies and selectivities in drug design campaigns. However, MM force fields pose a challenge to achieving higher accuracy due to their inability to capture the intricate atomic interactions of the physical systems they model. A major limitation is the accuracy with which ligand intramolecular energetics—especially torsions—can be modeled, as poor modeling of torsional profiles and coupling with other valence degrees of freedom can have a significant impact on binding free energies. Here, we demonstrate how a new generation of hybrid machine learning / molecular mechanics (ML/MM) potentials can deliver significant accuracy improvements in modeling protein-ligand binding affinities. Using a nonequilibrium perturbation approach, we can correct a standard, GPU-accelerated MM alchemical free energy calculation in a simple post-processing step to efficiently recover ML/MM free energies and deliver a significant accuracy improvement with small additional computational effort. To demonstrate the utility of ML/MM free energy calculations, we apply this approach to a benchmark system for predicting kinase:inhibitor binding affinities—a congeneric ligand series for non-receptor tyrosine kinase TYK2 (Tyk2)—wherein state-of-the-art MM free energy calculations (with OPLS2.1) achieve inaccuracies of 0.93±0.12 kcal mol−1 in predicting absolute binding free energies. Applying an ML/MM hybrid potential based on the ANI2x ML model and AMBER14SB/TIP3P with the OpenFF 1.0.0 (“Parsley”) small molecule force field as an MM model, we show that it is possible to significantly reduce the error in absolute binding free energies from 0.97 [95% CI: 0.68, 1.21] kcal mol−1 (MM) to 0.47 [95% CI: 0.31, 0.63] kcal mol−1 (ML/MM).


Sign in / Sign up

Export Citation Format

Share Document