scholarly journals Reproducibility of Free Energy Calculations Across Different Molecular Simulation Software

Author(s):  
Hannes H. Loeffler ◽  
Stefano Bosisio ◽  
Guilherme Duarte Ramos Matos ◽  
Donghyuk Suh ◽  
Benoît Roux ◽  
...  

<div> <div> <div> <p>Alchemical free energy calculations are an increasingly important modern simulation technique. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD include support for the method. Implementation details vary among those codes but users expect reliability and reproducibility, i.e. for a given molec- ular model and set of forcefield parameters, comparable free energy should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counter- part. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with aforementioned codes. Achieving this level of reproducibility requires considerable attention to detail and package–specific simulation protocols, and no uni- versally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.</p></div></div></div>

2018 ◽  
Author(s):  
Hannes H. Loeffler ◽  
Stefano Bosisio ◽  
Guilherme Duarte Ramos Matos ◽  
Donghyuk Suh ◽  
Benoît Roux ◽  
...  

<div> <div> <div> <p>Alchemical free energy calculations are an increasingly important modern simulation technique. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD include support for the method. Implementation details vary among those codes but users expect reliability and reproducibility, i.e. for a given molec- ular model and set of forcefield parameters, comparable free energy should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counter- part. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with aforementioned codes. Achieving this level of reproducibility requires considerable attention to detail and package–specific simulation protocols, and no uni- versally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.</p></div></div></div>


2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2021 ◽  
Author(s):  
Marcus Wieder ◽  
Josh Fass ◽  
John D. Chodera

AbstractAlchemical free energy calculations are an important tool in the computational chemistry tool-box, enabling the efficient calculation of quantities critical for drug discovery such as ligand binding affinities, selectivities, and partition coefficients. However, modern alchemical free energy calculations suffer from three significant limitations: (1) modern molecular mechanics force fields are limited in their ability to model complex molecular interactions, (2) classical force fields are unable to treat phenomena that involve rearrangements of chemical bonds, and (3) these calculations are unable to easily learn to improve their performance if readily-available experimental data is available. Here, we show how all three limitations can be overcome through the use of quantum machine learning (QML) potentials capable of accurately modeling quantum chemical energetics even when chemical bonds are made and broken. Because these potentials are based on mathematically convenient deep learning architectures instead of traditional quantum chemical formulations, QML simulations can be run at a fraction of the cost of quantum chemical simulations using modern graphics processing units (GPUs) and machine learning frameworks. We demonstrate that alchemical free energy calculations in explicit solvent are especially simple to implement using QML potentials because these potentials lack singularities and other pathologies typical of molecular mechanics potentials, and that alchemical free energy calculations are highly effective even when bonds are broken or made. Finally, we show how a limited number of experimental free energy measurements can be used to significantly improve the accuracy of computed free energies for unrelated compounds with no significant generalization gap. We illustrate these concepts on the prediction of aqueous tautomer free energies (related to tautomer ratios), which are highly relevant to drug discovery in that more than a quarter of all approved drugs exist as a mixture of tautomers.


2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2020 ◽  
Author(s):  
Jenke Scheen ◽  
Wilson Wu ◽  
Antonia S. J. S. Mey ◽  
Paolo Tosco ◽  
Mark Mackey ◽  
...  

A methodology that combines alchemical free energy calculations (FEP) with machine learning (ML) has been developed to compute accurate absolute hydration free energies. The hybrid FEP/ML methodology was trained on a subset of the FreeSolv database, and retrospectively shown to outperform most submissions from the SAMPL4 competition. Compared to pure machine-learning approaches, FEP/ML yields more precise estimates of free energies of hydration, and requires a fraction of the training set size to outperform standalone FEP calculations. The ML-derived correction terms are further shown to be transferable to a range of related FEP simulation protocols. The approach may be used to inexpensively improve the accuracy of FEP calculations, and to flag molecules which will benefit the most from bespoke forcefield parameterisation efforts.


Sign in / Sign up

Export Citation Format

Share Document