isothermal titration calorimetry
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 144)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Vol 606 ◽  
pp. 1823-1832
Author(s):  
Pablo F. Garrido ◽  
Margarida Bastos ◽  
Adrián Velázquez-Campoy ◽  
Alfredo Amigo ◽  
Philippe Dumas ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13210
Author(s):  
Danuta Witkowska ◽  
Agnieszka Szebesczyk ◽  
Joanna Wątły ◽  
Michał Braczkowski ◽  
Magdalena Rowińska-Żyrek

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2930
Author(s):  
Rossella Migliore ◽  
Nicola D’Antona ◽  
Carmelo Sgarlata ◽  
Grazia M. L. Consoli

The co-delivery of anticancer drugs into tumor cells by a nanocarrier may provide a new paradigm in chemotherapy. Temozolomide and curcumin are anticancer drugs with a synergistic effect in the treatment of multiform glioblastoma. In this study, the entrapment and co-entrapment of temozolomide and curcumin in a p-sulfonato-calix[4]arene nanoparticle was investigated by NMR spectroscopy, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering. Critical micellar concentration, nanoparticle size, zeta potential, drug loading percentage, and thermodynamic parameters were all consistent with a drug delivery system. Our data showed that temozolomide is hosted in the cavity of the calix[4]arene building blocks while curcumin is entrapped within the nanoparticle. Isothermal titration calorimetry evidenced that drug complexation and entrapment are entropy driven processes. The loading in the calixarene-based nanocontainer enhanced the solubility and half-life of both drugs, whose medicinal efficacy is affected by low solubility and rapid degradation. The calixarene-based nanocontainer appears to be a promising new candidate for nanocarrier-based drug combination therapy for glioblastoma.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Han Wu ◽  
Zuobing Chen ◽  
Shaolong Qi ◽  
Bing Bai ◽  
Jiajun Ye ◽  
...  

Abstract Background Supramolecular theranostics have exhibited promising potentials in disease diagnosis and therapy by taking advantages of the dynamic and reversible nature of non-covalent interactions. It is extremely important to figure out the stability of the driving forces in physiological environment for the preparation of theranostic systems. Methods The host−guest complexation between cucurbit[8]uril (CB[8]), 4,4′-bipyridinium, and napththyl guest was fully studied using various characterizations, including nuclear magnetic resonance spectroscopy, ultraviolet–visible (UV–vis) spectroscopy, isothermal titration calorimetry (ITC). The association constants of this ternary complex were determined using isothermal titration calorimetry. The stability of the non-covalent interactions and self-assemblies form from this molecular recognition was confirmed by UV–vis spectroscopy and dynamic light scattering (DLS). A supramolecular nanomedicine was constructed on the basis of this 1:1:1 ternary recognition, and its in vitro and in vivo anticancer efficacy were thoroughly evaluated. Positron emission tomography (PET) imaging was used to monitor the delivery and biodistribution of the supramolecular nanomedicine. Results Various experiments confirmed that the ternary complexation between 4,4′-bipyridinium, and napththyl derivative and CB[8] was stable in physiological environment, including phosphate buffered solution and cell culture medium. Supramolecular nanomedicine (SNM@DOX) encapsulating a neutral anticancer drug (doxrubincin, DOX) was prepared based on this molecular recognition that linked the hydrophobic poly(ε-caprolactone) chain and hydrophilic polyethylene glycol segment. The non-covalent interactions guaranteed the stability of SNM@DOX during blood circulation and promoted its tumor accumulation by taking advantage of the enhanced permeability and retention effect, thus greatly improving the anti-tumor efficacy as compared with the free drug. Conclusion Arising from the host-enhanced charge-transfer interactions, the CB[8]-based ternary recognition was stable enough in physiological environment, which was suitable for the fabrication of supramolecular nanotheranostics showing promising potentials in precise cancer diagnosis and therapy. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document