scholarly journals Unstable periodic orbits are faithful biomarker for the onset of epileptic seizure

Author(s):  
Mayukha Pal ◽  
Sree Bhattacherjee ◽  
Prasanta K. Panigrahi

AbstractEEG signals of healthy individuals and epileptic patients, when treated as time series of evolving dynamical systems, are found to display characteristic differences in the behavior of the unstable periodic orbits (UPO), marking the transition from regular periodic variations to self-similar dynamics. The UPO, manifesting as broad resonances in the Fourier power spectra, are quite prominent in their presence in the normal signals and are either absent or considerably weakened with a shift towards lower frequency in the epileptic condition. The weighted average and visibility power computed for the UPO region are found to distinguish epileptic seizure from healthy individuals’ EEG. Remarkably, the unstable periodic motion for healthy ones is well described by damped harmonic motion, the orbits displaying smooth dynamics. In contrast, the epileptic cases show bi-stability and piecewise linear motion for the larger orbits, exhibiting large sudden jumps in the ‘velocity’ (referred to the rate of change of the EEG potentials), characteristically different from the healthy cases, highlighting the efficacy of the UPO as biomarkers. For both the regions, 8-14Hz UPO and 40-45Hz resonance, we used data driven analysis to derive the system dynamics in terms of sinusoidal functions, which reveal the presence of higher harmonics, confirming nonlinearity of the underlying system and leading to quantification of the discernible differences between the healthy and epileptic patients. The gamma wave region in the 40-45Hz range, connecting the conscious and the unconscious states of the brain, reveals well-structured coherence phenomena, in addition to the prominent resonance, which potentially can be used as a biomarker for the epileptic seizure. The wavelet scalogram analysis for both UPO and 40-45Hz region also clearly differentiates the healthy condition from epileptic seizure, confirming the above dynamical picture, depicting the higher harmonic generation, and intermixing of different modes in these two regions of interest.SignificanceUnstable periodic orbits are demonstrated as faithful biomarkers for detecting seizure, being prominently present in the Fourier power spectra of the EEG signals of the healthy individuals and either being absent or significantly suppressed for the epileptic cases, showing distinctly different behavior for the unstable orbits, in the two cases. A phase space study, with EEG potential and its rate of change as coordinate and corresponding velocity, clearly delineates the dynamics in healthy and diseased individuals, demonstrating the absence or weakening of UPO, that can be a reliable bio-signature for the epileptic seizure. The phase-space analysis in the gamma region also shows specific signatures in the form of coherent oscillations and higher harmonic generation, further confirmed through wavelet analysis.

2014 ◽  
Vol 24 (06) ◽  
pp. 1450077 ◽  
Author(s):  
Matthew A. Morena ◽  
Kevin M. Short

We report on the tendency of chaotic systems to be controlled onto their unstable periodic orbits in such a way that these orbits are stabilized. The resulting orbits are known as cupolets and collectively provide a rich source of qualitative information on the associated chaotic dynamical system. We show that pairs of interacting cupolets may be induced into a state of mutually sustained stabilization that requires no external intervention in order to be maintained and is thus considered bound or entangled. A number of properties of this sort of entanglement are discussed. For instance, should the interaction be disturbed, then the chaotic entanglement would be broken. Based on certain properties of chaotic systems and on examples which we present, there is further potential for chaotic entanglement to be naturally occurring. A discussion of this and of the implications of chaotic entanglement in future research investigations is also presented.


2021 ◽  
Vol 427 ◽  
pp. 133009
Author(s):  
Mayur V. Lakshmi ◽  
Giovanni Fantuzzi ◽  
Sergei I. Chernyshenko ◽  
Davide Lasagna

1970 ◽  
Vol 7 (2) ◽  
pp. 607-625 ◽  
Author(s):  
G. C. Dohler ◽  
L. F. Ku

The methods and problems involved in collecting water level data are explained, and the processing and formats of the data are illustrated. The trend of the change in mean water level is plotted and the corresponding rate of change is estimated by the regression technique. The power spectra of the water level variations are plotted to illustrate these variations in terms of frequencies.


2007 ◽  
Vol 14 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Y. Saiki

Abstract. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.


Sign in / Sign up

Export Citation Format

Share Document