scholarly journals Sensing Local Field Potentials with a Directional and Scalable Depth Array: DISC

2021 ◽  
Author(s):  
Amada Abrego Mancilla ◽  
Wasif Khan ◽  
Christopher E Wright ◽  
Neela Prajapati ◽  
M Rabiul Islam ◽  
...  

A variety of electrophysiology tools are available to the neurosurgeon for diagnosis, functional therapy, and neural prosthetics. However, no tool can currently address these three critical recording needs: (i) a surgical method that can reach any cortical region in a minimally invasive manner; (ii) record microscale, mesoscale, and macroscale resolutions simultaneously; and (iii) enable recording from multiple brain regions. This work presents a novel device for recording local field potentials (LFPs) whose form is based on state-of-the-art stereo-electroencephalogram (sEEG). Using quasi-static electromagnetic modeling, the lead body is shown to shield LFP sources and this enables directional sensitivity and scalability when microelectrodes are positioned radially, which we refer to as a DISC array. As predicted, DISC demonstrated significantly improved signal-to-noise, directional sensitivity, and decoding accuracy in the rat barrel cortex during whisker stimulation. Critically, DISC also demonstrated equivalent fidelity at the macroscale and, uniquely, performs current source density in stereo. Directional sensitivity of LFPs may significantly improve brain-computer interfaces and many diagnostic procedures, including epilepsy foci detection and deep brain targeting.

Author(s):  
Claudia Cecchetto ◽  
Sven Schroder ◽  
Stefan Keil ◽  
Mufti Mahmud ◽  
Evelin Brose ◽  
...  

Author(s):  
Mufti Mahmud ◽  
Davide Travalin ◽  
Alessandra Bertoldo ◽  
Stefano Girardi ◽  
Marta Maschietto ◽  
...  

2021 ◽  
Author(s):  
Benedetta Mariani ◽  
Giorgio Nicoletti ◽  
Marta Bisio ◽  
Marta Maschietto ◽  
Roberto Oboe ◽  
...  

Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both spikes and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both spikes and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to an across-layers synchronization mode that appears to dominate during cortical representation of the single sensory input.


Sign in / Sign up

Export Citation Format

Share Document