scholarly journals Learning about threat from friends and strangers is equally effective: an fMRI study on observational fear conditioning

2021 ◽  
Author(s):  
Anna M. Kazmierowska ◽  
Michal Szczepanik ◽  
Marek Wypych ◽  
Dawid Drozdziel ◽  
Artur Marchewka ◽  
...  

Humans often benefit from social cues when learning about the world. For instance, learning about threats from others can save the individual from dangerous first-hand experiences. Familiarity is believed to increase the effectiveness of social learning, but it is not clear whether it plays a role in learning about threats. Using functional magnetic resonance imaging, we undertook a naturalistic approach and investigated whether there was a difference between observational fear learning from friends and strangers. Participants (observers) witnessed either their friends or strangers (demonstrators) receiving aversive (shock) stimuli paired with colored squares (observational learning stage). Subsequently, participants watched the same squares, but without receiving any shocks (direct-expression stage). We observed a similar pattern of brain activity in both groups of observers. Regions related to threat responses (amygdala, anterior insula, anterior cingulate cortex) and social perception (fusiform gyrus, posterior superior temporal sulcus) were activated during the observational phase, reflecting the fear contagion process. The anterior insula and anterior cingulate cortex were also activated during the subsequent stage, indicating the expression of learned threat. Because there were no differences between participants observing friends and strangers, we argue that social threat learning is independent of the level of familiarity with the demonstrator.

2019 ◽  
Author(s):  
Mordechai Hayman ◽  
Shahar Arzy

“Mental travel” is the ability to imagine oneself in different places and times and to adopt other people’s point of view (POV), also termed “Theory of Mind (ToM)”. While ToM has been extensively investigated, self-projection with respect to ones’ own and others’ social networks has yet to be systematically studied.Here we asked participants to “project” themselves to four different POVs: a significant other, a non-significant other, a famous-person, and their own-self. From each POV they were asked to rate the level of affiliation (closeness) to different individuals in the respective social network while undergoing functional MRI.Participants were always faster making judgments from their own POV compared to other POVs (self-projection effect) and for people who were personally closer to their adopted POV (self-reference effect). Brain activity at the medial prefrontal and anterior cingulate cortex in the self POV condition was found to be higher compared to all other conditions. Activity at the right temporoparietal junction and medial parietal cortex was found to distinguish between the personally related (self, significant- and non-significant others) and unrelated (famous-person) individuals within the social network. Regardless of the POV, the precuneus, anterior cingulate cortex, prefrontal cortex, and temporoparietal junction distinguished between relatively closer and distant people. Representational similarity analysis (RSA) implicated the left retrosplenial cortex as crucial for social distance processing across all POVs.


2020 ◽  
Vol 30 (8) ◽  
pp. 4336-4345
Author(s):  
Eldon Emberly ◽  
Jeremy K Seamans

Abstract The ability to act on knowledge about the value of stimuli or actions factors into simple foraging behaviors as well as complex forms of decision-making. In striatal regions, action representations are thought to acquire value through a gradual (reinforcement-learning based) process. It is unclear whether this is also true for anterior cingulate cortex (ACC) where neuronal representations tend to change abruptly. We recorded from ensembles of ACC neurons as rats deduced which of 3 levers was rewarded each day. The rat’s lever preferences changed gradually throughout the sessions as they eventually came to focus on the rewarded lever. Most individual neurons changed their responses to both rewarded and nonrewarded lever presses abruptly (<2 trials). These transitions occurred asynchronously across the population but peaked near the point where the rats began to focus on the rewarded lever. Because the individual transitions were asynchronous, the overall change at the population level appeared gradual. Abrupt transitions in action representations of ACC neurons may be part of a mechanism that alters choice strategies as new information is acquired.


2019 ◽  
Vol 29 (11) ◽  
pp. 4628-4645 ◽  
Author(s):  
Andrea Scalabrini ◽  
Sjoerd J H Ebisch ◽  
Zirui Huang ◽  
Simone Di Plinio ◽  
Mauro Gianni Perrucci ◽  
...  

Abstract The spontaneous activity of the brain is characterized by an elaborate temporal structure with scale-free properties as indexed by the power law exponent (PLE). We test the hypothesis that spontaneous brain activity modulates task-evoked activity during interactions with animate versus inanimate stimuli. For this purpose, we developed a paradigm requiring participants to actively touch either animate (real hand) or inanimate (mannequin hand) stimuli. Behaviorally, participants perceived the animate target as closer in space, temporally more synchronous with their own self, and more personally relevant, compared with the inanimate. Neuronally, we observed a modulation of task-evoked activity by animate versus inanimate interactions in posterior insula, in medial prefrontal cortex, comprising anterior cingulate cortex, and in medial superior frontal gyrus. Among these regions, an increased functional connectivity was shown between posterior insula and perigenual anterior cingulate cortex (PACC) during animate compared with inanimate interactions and during resting state. Importantly, PLE during spontaneous brain activity in PACC correlated positively with PACC task-evoked activity during animate versus inanimate stimuli. In conclusion, we demonstrate that brain spontaneous activity in PACC can be related to the distinction between animate and inanimate stimuli and thus might be specifically tuned to align our brain with its animate environment.


2003 ◽  
Vol 90 (3) ◽  
pp. 1865-1876 ◽  
Author(s):  
Ivan E.T. de Araujo ◽  
Morten L. Kringelbach ◽  
Edmund T. Rolls ◽  
Francis McGlone

In an event-related functional magnetic resonance imaging (fMRI) study in humans it was shown, first, that water produces activations in cortical taste areas (in particular the frontal operculum/anterior insula which is the primate primary taste cortex, and the caudal orbitofrontal/secondary taste cortex) comparable to those produced by the prototypical tastants salt and glucose. Second, the activations in the frontal operculum/anterior insula produced by water when thirsty were still as large after the subjects had consumed water to satiety. Third, in contrast, the responses to water in the caudal orbitofrontal cortex were modulated by the physiological state of the body, in that responses to the oral delivery of water in this region were not found after the subjects had drunk water to satiety. Fourth, further evidence that the reward value or pleasantness of water is represented in the orbitofrontal cortex was that a positive correlation with the subjective ratings of the pleasantness of the water was found with activations in the caudal and anterior orbitofrontal cortex, and also in the anterior cingulate cortex. Fifth, it was found that a region of the middle part of the insula was also activated by water in the mouth, and further, that this activation only occurred when thirsty. Sixth, analyses comparing pre- and postsatiety periods (i.e., when thirsty and when not thirsty) independently of stimulus delivery revealed higher activity levels in the rostral anterior cingulate cortex. The activity of the rostral anterior cingulate cortex thus appears to reflect the thirst level or motivational state of the subjects.


NeuroImage ◽  
1998 ◽  
Vol 7 (4) ◽  
pp. S110 ◽  
Author(s):  
C.S. Carter ◽  
T. Braver ◽  
D.M. Barch ◽  
M. Botvinick ◽  
A. Sanders ◽  
...  

2019 ◽  
Vol 30 (2) ◽  
pp. 550-562 ◽  
Author(s):  
K K Sharma ◽  
E A Kelly ◽  
C W Pfeifer ◽  
J L Fudge

Abstract Rodent fear-learning models posit that amygdala–infralimbic connections facilitate extinction while amygdala–prelimbic prefrontal connections mediate fear expression. Analogous amygdala–prefrontal circuitry between rodents and primates is not established. Using paired small volumes of neural tracers injected into the perigenual anterior cingulate cortex (pgACC; areas 24b and 32; a potential homologue to rodent prelimbic cortex) and subgenual anterior cingulate cortex (sgACC, areas 25 and 14c; a potential homologue to rodent infralimbic cortex) in a single hemisphere, we mapped amygdala projections to the pgACC and sgACC within single subjects. All injections resulted in dense retrograde labeling specifically within the intermediate division of the basal nucleus (Bi) and the magnocellular division of the accessory basal nucleus (ABmc). Areal analysis revealed a bias for connectivity with the sgACC, with the ABmc showing a greater bias than the Bi. Double fluorescence analysis revealed that sgACC and pgACC projections were intermingled within the Bi and ABmc, where a proportion were double labeled. We conclude that amygdala inputs to the ACC largely originate from the Bi and ABmc, preferentially connect to the sgACC, and that a subset collaterally project to both sgACC and pgACC. These findings advance our understanding of fear extinction and fear expression circuitry across species.


Sign in / Sign up

Export Citation Format

Share Document