scholarly journals The dynamical Matryoshka model: 1. Incoherent neutron scattering functions for lipid dynamics in bilayers

2021 ◽  
Author(s):  
Dominique J. Bicout ◽  
Aline Cisse ◽  
Tatsuhito Matsuo ◽  
Judith Peters

AbstractFluid lipid bilayers are the building blocks of biological membranes. Although there is a large amount of experimental data using inconsistent quasi-elastic neutron scattering (QENS) techniques to study membranes, very little theoretical works have been developed to study the local dynamics of membranes. The main objective of this work is to build a theoretical framework to study and describe the local dynamics of lipids and derive analytical expressions of inconsistent diffusion functions (ISF) for QENS. As results, we developed the dynamical Matryoshka model which describes the local dynamics of lipid molecules in membrane layers as a nested hierarchical convolution of three motional processes: (i) individual motions described by the vibrational motions of H-atoms; (ii) internal motions including movements of the lipid backbone, head groups and tails, and (iii) molecule movements of the lipid molecule as a whole. The analytical expressions of the ISF associated with these movements are all derived. For use in analyzing the QENS experimental data, we also derived an analytical expression for the aggregate ISF of the Matryoshka model which involves an elastic term plus three inelastic terms of well-separated time scales and whose amplitudes and rates are functions of the lipid motions. And as an illustrative application, we used the aggregated ISF to analyze the experimental QENS data on a lipid sample of multilamellar bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine). It is clear from this analysis that the dynamical Matryoshka model describes very well the experimental data and allow extracting the dynamical parameters of the studied system.

1989 ◽  
Vol 8 (2) ◽  
pp. 201-206 ◽  
Author(s):  
W Pfeiffer ◽  
Th Henkel ◽  
E Sackmann ◽  
W Knoll ◽  
D Richter

Soft Matter ◽  
2011 ◽  
Vol 7 (18) ◽  
pp. 8358 ◽  
Author(s):  
C. L. Armstrong ◽  
M. Trapp ◽  
J. Peters ◽  
T. Seydel ◽  
M. C. Rheinstädter

2018 ◽  
Author(s):  
◽  
Zachary Buck

Membrane proteins represent a significant frontier in structural biology they are ubiquitous in nature and perform a variety of tasks that help govern cellular activity. Their structure, insertion mechanisms, and function largely depend on the interactions between peptide-lipid domains and the hydrating water. Therefore, the dynamics of the membrane-associated water and its interaction with embedded proteins remain some of the most fundamental issues in biological physics today. Single-supported lipid bilayers (SSLBs) provide model systems for investigating their structural and dynamical properties via atomic force microscopy (AFM) and quasielastic neutron scattering (QENS), respectively. QENS measurements on SSLBs comprised of zwitterionic (DMPC) and anionic (DMPG) lipids reveal vastly different freezing/melting behavior of their hydration water, while also elucidating various types of membrane-associated water characterized by their translational diffusion rates. Moreover, results from temperature-dependent neutron diffraction measurements on SSLBs have established a correlation between the formation of various crystalline ice structures and freezing/melting transitions observed in the elastic component of their QENS spectra, thereby confirming the various growth modes of the membrane-associated ice. We have since enhanced the complexity and biological relevance of such systems by incorporating the antimicrobial peptide, melittin, into a DMPC membrane. On monitoring the incoherent elastic neutron intensity as a function of temperature from melittin-treated DMPC membranes, we observe an abrupt freezing transition of the associated water not seen in the bare membrane case. Moreover, the change in elastic intensity of this freezing step increases in proportion to peptide concentration, suggesting that water could be freezing onto membrane-bound melittin. In addition to bulk-like water present in the sample, analysis of the quasielastic spectra collected provides evidence of a second water type that diffuses more slowly and freezes at a higher temperature than the bulk-like water. Furthermore, in situ AFM studies reveal the formation of dimple-like features on the surfaces of such membranes when melittin concentrations exceed 0.5 [mu]M. These changes induced in the bilayer have been interpreted as aggregates of membrane-bound melittin responsible for the altered freezing behavior and dynamics of the hydration water. An unexpected time dependence of the elastically-scattered neutron intensity was observed when membranes of DMPC treated with 0.5 [mu]M melittin were annealed in the temperature range 325 K less than T less than 340 K, an effect not present in DMPC membranes treated with other melittin concentrations. These results are consistent with the slowing down of hydrogen nuclei and anchoring of surface-bound melittin peptides while interacting with DMPC membranes.


1992 ◽  
Vol 2 (8) ◽  
pp. 1589-1615 ◽  
Author(s):  
S. König ◽  
W. Pfeiffer ◽  
T. Bayerl ◽  
D. Richter ◽  
E. Sackmann

Soft Matter ◽  
2010 ◽  
Vol 6 (23) ◽  
pp. 5864 ◽  
Author(s):  
Clare L. Armstrong ◽  
Martin D. Kaye ◽  
Michaela Zamponi ◽  
Eugene Mamontov ◽  
Madhusudan Tyagi ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Laura Toppozini ◽  
Clare L. Armstrong ◽  
Martin D. Kaye ◽  
Madhusudan Tyagi ◽  
Timothy Jenkins ◽  
...  

We present a high-temperature and high-energy resolution neutron scattering investigation of hydration water freezing in single supported lipid bilayers. Single supported lipid bilayers provide a well-defined biological interface to study hydration water dynamics and coupling to membrane degrees of freedom. Nanosecond molecular motions of membrane and hydration water were studied in the temperature range 240 K < T < 290 K in slow heating and cooling cycles using coherent and incoherent elastic neutron scattering on a backscattering spectrometer. Several freezing and melting transitions were observed. From the length scale dependence of the elastic scattering, these transitions could be assigned to freezing and melting of hydration water dynamics, diffusive lipid, and lipid acyl-tail dynamics. Coupling was investigated by comparing the different freezing and melting temperatures. While it is often speculated that membrane and hydration water dynamics are strongly coupled, we find that membrane and hydration water dynamics are at least partially decoupled in single bilayers.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tatsuhito Matsuo ◽  
Alessio De Francesco ◽  
Judith Peters

Lysozyme amyloidosis is a hereditary disease, which is characterized by the deposition of lysozyme amyloid fibrils in various internal organs. It is known that lysozyme fibrils show polymorphism and that polymorphs formed at near-neutral pH have the ability to promote more monomer binding than those formed at acidic pH, indicating that only specific polymorphs become dominant species in a given environment. This is likely due to the polymorph-specific configurational diffusion. Understanding the possible differences in dynamical behavior between the polymorphs is thus crucial to deepen our knowledge of amyloid polymorphism and eventually elucidate the molecular mechanism of lysozyme amyloidosis. In this study, molecular dynamics at sub-nanosecond timescale of two kinds of polymorphic fibrils of hen egg white lysozyme, which has long been used as a model of human lysozyme, formed at pH 2.7 (LP27) and pH 6.0 (LP60) was investigated using elastic incoherent neutron scattering (EINS) and quasi-elastic neutron scattering (QENS). Analysis of the EINS data showed that whereas the mean square displacement of atomic motions is similar for both LP27 and LP60, LP60 contains a larger fraction of atoms moving with larger amplitudes than LP27, indicating that the dynamical difference between the two polymorphs lies not in the averaged amplitude, but in the distribution of the amplitudes. Furthermore, analysis of the QENS data showed that the jump diffusion coefficient of atoms is larger for LP60, suggesting that the atoms of LP60 undergo faster diffusive motions than those of LP27. This study thus characterizes the dynamics of the two lysozyme polymorphs and reveals that the molecular dynamics of LP60 is enhanced compared with that of LP27. The higher molecular flexibility of the polymorph would permit to adjust its conformation more quickly than its counterpart, facilitating monomer binding.


Sign in / Sign up

Export Citation Format

Share Document