ballistic motion
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jordi F. Pagès ◽  
Frederic Bartumeus ◽  
Javier Romero ◽  
Teresa Alcoverro

Abstract Background Classic ecological formulations of predator–prey interactions often assume that predators and prey interact randomly in an information-limited environment. In the field, however, most prey can accurately assess predation risk by sensing predator chemical cues, which typically trigger some form of escape response to reduce the probability of capture. Here, we explore under laboratory-controlled conditions the long-term (minutes to hours) escaping response of the sea urchin Paracentrotus lividus, a key species in Mediterranean subtidal macrophyte communities. Methods Behavioural experiments involved exposing a random sample of P. lividus to either one of two treatments: (i) control water (filtered seawater) or (ii) predator-conditioned water (with cues from the main P. lividus benthic predator—the gastropod Hexaplex trunculus). We analysed individual sea urchin trajectories, computed their heading angles, speed, path straightness, diffusive properties, and directional entropy (as a measure of path unpredictability). To account for the full picture of escaping strategies, we followed not only the first instants post-predator exposure, but also the entire escape trajectory. We then used linear models to compare the observed results from control and predators treatments. Results The trajectories from sea urchins subjected to predator cues were, on average, straighter and faster than those coming from controls, which translated into differences in the diffusive properties and unpredictability of their movement patterns. Sea urchins in control trials showed complex diffusive properties in an information-limited environment, with highly variable trajectories, ranging from Brownian motion to superdiffusion, and even marginal ballistic motion. In predator cue treatments, variability reduced, and trajectories became more homogeneous and predictable at the edge of ballistic motion. Conclusions Despite their old evolutionary origin, lack of cephalization, and homogenous external appearance, the trajectories that sea urchins displayed in information-limited environments were complex and ranged widely between individuals. Such variable behavioural repertoire appeared to be intrinsic to the species and emerged when the animals were left unconstrained. Our results highlight that fear from predators can be an important driver of sea urchin movement patterns. All in all, the observation of anomalous diffusion, highly variable trajectories and the behavioural shift induced by predator cues, further highlight that the functional forms currently used in classical predator–prey models are far from realistic.


2021 ◽  
pp. 2100165
Author(s):  
Xinyue Wang ◽  
Jialong Tu ◽  
Xing Yu ◽  
Liping Zhang ◽  
Dongmei Deng

2021 ◽  
Vol 8 (5) ◽  
pp. 202279
Author(s):  
Fabio Giavazzi ◽  
Samuele Spini ◽  
Marina Carpineti ◽  
Alberto Vailati

We investigate theoretically the ballistic motion of small legged insects and legless larvae after a jump. Notwithstanding their completely different morphologies and jumping strategies, some legged and legless animals have convergently evolved to jump with a take-off angle of 60°, which differs significantly from the leap angle of 45° that allows reaching maximum range. We show that in the presence of uniformly distributed random obstacles the probability of a successful jump is directly proportional to the area under the trajectory. In the presence of negligible air drag, the probability is maximized by a take-off angle of 60°. The numerical calculation of the trajectories shows that they are significantly affected by air drag, but the maximum probability of a successful jump still occurs for a take-off angle of 59–60° in a wide range of the dimensionless Reynolds and Froude numbers that control the process. We discuss the implications of our results for the exploration of unknown environments such as planets and disaster scenarios by using jumping robots.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2931
Author(s):  
Waldemar Nowicki

The structure and dynamic properties of polymer chains in a confined environment were studied by means of the Monte Carlo method. The studied chains were represented by coarse-grained models and embedded into a simple 3D cubic lattice. The chains stood for two-block linear copolymers of different energy of bead–bead interactions. Their behavior was studied in a nanotube formed by four impenetrable surfaces. The long-time unidirectional motion of the chain in the tight nanopore was found to be correlated with the orientation of both parts of the copolymer along the length of the nanopore. A possible mechanism of the anomalous diffusion was proposed on the basis of thermodynamics of the system, more precisely on the free energy barrier of the swapping of positions of both parts of the chain and the impulse of temporary forces induced by variation of the chain conformation. The mean bead and the mass center autocorrelation functions were examined. While the former function behaves classically, the latter indicates the period of time of superdiffusive motion similar to the ballistic motion with the autocorrelation function scaling with the exponent t5/3. A distribution of periods of time of chain diffusion between swapping events was found and discussed. The influence of the nanotube width and the chain length on the polymer diffusivity was studied.


2020 ◽  
Author(s):  
Keisuke Ishihara ◽  
Ashish B. George ◽  
Ryan Cornelius ◽  
Kirill S. Korolev

Self-activation coupled to a transport mechanism results in traveling waves that describe polymerization reactions, forest fires, tumor growth, and even the spread of epidemics. Diffusion is a simple and commonly used model of particle transport. Many physical and biological systems are, however, better described by persistent random walks that switch between multiple states of ballistic motion. So far, traveling fronts in persistent random walk models have only been analyzed in special, simplified cases. Here, we formulate the general model of reaction-transport processes in such systems and show how to compute the expansion velocity for arbitrary number of states. For the two-state model, we obtain a closed-form expression for the velocity and report how it is affected by different transport and replication parameters. We also show that nonzero death rates result in a discontinuous transition from quiescence to propagation. We compare our results to a recent observation of a discontinuous onset of propagation in microtubule asters and comment on the universal nature of the underlying mechanism.


2020 ◽  
pp. 159-212
Author(s):  
John Beavers ◽  
Andrew Koontz-Garboden

Chapter 4 explores the question of Manner/Result Complementarity. It proposes that there are systematic verb classes that entail both meanings at once, including verbs of manner of killing, cooking, and ballistic motion, demonstrated by applying various diagnostics for manner and result in a verb’s meaning and showing that certain verb classes pass both sets of tests. Data from sublexical modification further show that the manner and result meanings are both coming from the sole root, arguing against an alternative by which manner plus result verbs have two roots, each introducing one meaning. The roots of these verbs can either be syntactically like canonical manner roots or canonical stative roots, and a formal analysis for how roots of each type can introduce both meanings at once is developed. These roots also all entail causation as well, arguing once again against Bifurcation.


Author(s):  
Jaeheon Kim ◽  
S-H Cho ◽  
V Bujarrabal ◽  
H Imai ◽  
R Dodson ◽  
...  

Abstract H2O (22 GHz) and SiO masers (43, 86, 129 GHz) in the bipolar proto-planetary nebula OH 231.8+4.2 were simultaneously monitored using the 21-m antennas of the Korean VLBI Network in 2009–2015. Both species exhibit periodic flux variations that correlate with the central star’s optical light curve, with a phase delay of up to 0.15 for the maser flux variations with respect to the optical light curve. The flux densities of SiO v = 2, J = 1→0 and H2O masers decrease with time, implying that they may disappear in 10–20 years. However, there seems to have been a transient episode of intense H2O maser emission around 2010. We also found a systematic behaviour in the velocity profiles of these masers. The velocities of the H2O maser components appear to be remarkably constant, suggesting ballistic motion for the bipolar outflow in this nebula. On the other hand, those of the SiO maser clumps show a systematic radial acceleration of the individual clumps, converging to the outflow velocity of the H2O maser clumps. Measuring the full widths at zero power of the detected lines, we estimated the expansion velocities of the compact bipolar outflow traced by H2O maser and SiO thermal line, and discussed the possibility of the expanding SiO maser region in the equatorial direction. All of our analyses support that the central host star of OH231.8 is close to the tip of the AGB phase, and that the mass-loss rate recently started to decrease because of incipient post-AGB evolution.


2019 ◽  
Vol 16 (156) ◽  
pp. 20190398
Author(s):  
Anders Andersen ◽  
Julia Dölger

We present general formulae for planktonic predator–prey encounter rates with encounter zones of convex shape and randomly moving point-like prey with ballistic motion. When the predator is not moving, we show that the encounter rate is independent of the shape of the encounter zone around it and proportional to the product of the surface area of the encounter zone and the prey speed. By contrast, the shape of the encounter zone plays a role when both the predator and the prey are moving. Slow predator motion results in only a weak increase of the encounter rate relative to the non-motile predator situation, but it may lead to a significant shift in where prey impact the surface of the encounter zone. By analysing disc-like and rod-like encounter zones with lengthwise and sideways motion, respectively, we show that fast predator motion may significantly influence the encounter rate, depending on the shape and the direction of motion of the encounter zone.


2018 ◽  
Author(s):  
Kevin Smith ◽  
Peter Battaglia ◽  
Edward Vul

Does human behavior exploit deep and accurate knowledge about how the world works, or does it rely on shallow and often inaccurate heuristics? This fundamental question is rooted in a classic dichotomy in psychology: human intuitions about even simple scenarios can be poor, yet their behaviors can exceed the capabilities of even the most advanced machines. One domain where such a dichotomy has classically been demonstrated is intuitive physics. Here we demonstrate that this dichotomy is rooted in how physical knowledge is measured: extrapolation of ballistic motion is idiosyncratic and erroneous when people draw the trajectories, but consistent with accurate physical inferences under uncertainty when people use the same trajectories to catch a ball or release it to hit a target. Our results suggest that the contrast between rich and calibrated, versus poor and inaccurate patterns of physical reasoning exist as a result of using different systems of knowledge across tasks, rather than as a universal system of knowledge that is inconsistent across physical principles.


Sign in / Sign up

Export Citation Format

Share Document