scholarly journals Hypertrophic cardiomyopathy mutations in the pliant and light chain-binding regions of the lever arm of human β-cardiac myosin have divergent effects on myosin function

2021 ◽  
Author(s):  
Makenna M. Morck ◽  
Debanjan Bhowmik ◽  
Aminah Dawood ◽  
James A. Spudich ◽  
Kathleen M. Ruppel

ABSTRACTMutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy (HCM), a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin S2 tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.

Biochemistry ◽  
2013 ◽  
Vol 52 (7) ◽  
pp. 1249-1259 ◽  
Author(s):  
Thomas P. Burghardt ◽  
Laura A. Sikkink

Author(s):  
Peter O Awinda ◽  
Marissa Watanabe ◽  
Yemeserach M. Bishaw ◽  
Anna M Huckabee ◽  
Keinan B Agonias ◽  
...  

Morbidity and mortality associated with heart disease is a growing threat to the global population and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca2+-sensitivity of contraction for both genotypes, but this reduction in pCa50 was nearly twice as large for WT-RLC vs. N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca2+-sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM.


1999 ◽  
Vol 276 (6) ◽  
pp. H2148-H2158 ◽  
Author(s):  
Robert E. Welikson ◽  
Scott H. Buck ◽  
Jitandrakumar R. Patel ◽  
Richard L. Moss ◽  
Karen L. Vikstrom ◽  
...  

Myosin is a chemomechanical motor that converts chemical energy into the mechanical work of muscle contraction. More than 40 missense mutations in the cardiac myosin heavy chain (MHC) gene and several mutations in the two myosin light chains cause a dominantly inherited heart disease called familial hypertrophic cardiomyopathy. Very little is known about the biochemical defects in these alleles and how the mutations lead to disease. Because removal of the light chain binding domain in the lever arm of MHC should alter myosin’s force transmission but not its catalytic function, we tested the hypothesis that such a mutant MHC would act as a dominant mutation in cardiac muscle. Hearts from transgenic mice expressing this mutant myosin are asymmetrically hypertrophied, with increases in mass primarily restricted to the cardiac anterior wall. Histological examination demonstrates marked cellular hypertrophy, myocyte disorganization, small vessel coronary disease, and severe valvular pathology that included thickening and plaque formation. Skinned myocytes and multicellular preparations from transgenic hearts exhibited decreased Ca2+ sensitivity of tension and decreased relaxation rates after flash photolysis of diazo 2. These experiments demonstrate that alterations in myosin force transmission are sufficient to trigger the development of hypertrophic cardiomyopathy.


2015 ◽  
Vol 112 (30) ◽  
pp. E4138-E4146 ◽  
Author(s):  
Chen-Ching Yuan ◽  
Priya Muthu ◽  
Katarzyna Kazmierczak ◽  
Jingsheng Liang ◽  
Wenrui Huang ◽  
...  

Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 →Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca2+ sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.


2013 ◽  
Vol 110 (31) ◽  
pp. 12607-12612 ◽  
Author(s):  
R. F. Sommese ◽  
J. Sung ◽  
S. Nag ◽  
S. Sutton ◽  
J. C. Deacon ◽  
...  

2018 ◽  
Vol 115 (32) ◽  
pp. E7486-E7494 ◽  
Author(s):  
John A. Rohde ◽  
Osha Roopnarine ◽  
David D. Thomas ◽  
Joseph M. Muretta

We used transient biochemical and structural kinetics to elucidate the molecular mechanism of mavacamten, an allosteric cardiac myosin inhibitor and a prospective treatment for hypertrophic cardiomyopathy. We find that mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin not found in the single-headed S1 myosin motor fragment. We determined this by measuring cardiac myosin actin-activated and actin-independent ATPase and single-ATP turnover kinetics. A two-headed myosin fragment exhibits distinct autoinhibited ATP turnover kinetics compared with a single-headed fragment. Mavacamten enhanced this autoinhibition. It also enhanced autoinhibition of ADP release. Furthermore, actin changes the structure of the autoinhibited state by forcing myosin lever-arm rotation. Mavacamten slows this rotation in two-headed myosin but does not prevent it. We conclude that cardiac myosin is regulated in solution by an interaction between its two heads and propose that mavacamten stabilizes this state.


2021 ◽  
Vol 120 (3) ◽  
pp. 343a
Author(s):  
Michelle C. Rodriguez Garcia ◽  
Karissa Dieseldorff Jones ◽  
Rosemeire Kanashiro-Takeuchi ◽  
Audrey N. Chang ◽  
Eunyoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document