scholarly journals A method to quantitate maternal transcripts localized in sea urchin egg cortex by RT-qPCR with accurate normalization

2021 ◽  
Author(s):  
Konstantin Yakovlev ◽  
Yulia O. Kipryushina ◽  
Mariia A. Maiorova

The sea urchin egg cortex is a peripheral region of eggs consisting of cell membrane and adjacent cytoplasm, which contains actin and tubulin cytoskeleton, cortical granules and some proteins required for early development. Method for isolation of cortices from sea urchin eggs and early embryos has been developed in 70s of 20th Century. Since that time this method has been reliable tool to study protein localization and cytoskeletal organization in cortex of unfertilized eggs and embryos during first cleavages. This study is an estimation of reliability of RT-qPCR to analyze levels of maternal transcripts that are localized in egg cortex. Firstly, we selected seven potential reference genes, 28S, Cycb , Ebr1 , GAPDH , Hmg1 , Smtnl1 and Ubb , which transcripts are maternally deposited in sea urchin eggs. The candidate reference genes were ranked by five different algorithms (BestKeeper, CV, ΔCt, geNorm and NormFinder) upon calculated level stability in both eggs and isolated cortices. Our results show that gene ranking differs in total RNA and mRNA samples, though Ubb is most suitable reference gene in both cases. To validate feasibility of comparative analysis of eggs and isolated egg cortices by RT-qPCR, we selected Daglb-2 as a gene of interest, which transcripts potentially localized in cortex, and found increased level of Daglb -2 in egg cortices. This suggests that proposed RNA isolation method with subsequent quantitative RT-qPCR analysis can be used to approve cortical association of transcripts in sea urchin eggs.

1960 ◽  
Vol 8 (3) ◽  
pp. 603-607 ◽  
Author(s):  
Hikoichi Sakai

Masses of cortices of both unfertilized and fertilized sea urchin eggs can be isolated by crushing eggs in hypotonic MaCl2 (0.1 M) solution. The amount of cortical material in terms of protein-N increases steadily after fertilization until the monaster stage and thereafter remains almost constant until well into the two-cell stage. The amount of bound—SH per protein-N of the egg cortex also increases after fertilization, reaches a maximum value at the amphiaster stage and thereafter decreases rapidly as the cleavage of the cell proceeds.


1979 ◽  
Vol 149 (4) ◽  
pp. 938-953 ◽  
Author(s):  
S J Klebanoff ◽  
C A Foerder ◽  
E M Eddy ◽  
B M Shapiro

At the time of fertilization, sea urchin eggs release a peroxidase which, together with H2O2 generated by a respiratory burst, is responsible for hardening of the fertilization membrane. We demonstrate here that the ovoperoxidase of unfertilized eggs is located in cortical granules and, after fertilization, is concentrated in the fertilization membrane. Fertilization of sea urchin eggs or their parthenogenetic activation with the ionophor A23187 also results in (a) the conversion of iodide to a trichloroacetic acid-precipitable form (iodination), (b) the deiodination of eggs exogenously labeled with myeloperoxidase and H2O2, (c) the degradation of thyroxine as measured by the recovery of the released radioiodine at the origin and in the inorganic iodide spot on paper chromatography, and (d) the conversion of estradiol to an alcohol-precipitable form (estrogen binding). The iodination reaction and the binding of estradio occurs predominantly in the fertilization membrane where the ovoperoxidase is concentrated. From the estimation of the kinetics of incorporation of iodine, we determine that the peroxidative system is active for 30 min after fertilization, long after hardening of the fertilization membrane is complete. Most of the bound iodine is lost during the hatching process. Iodination of albumin is catalyzed by the material released from the egg during fertilization, when combined with H2O2 and iodide. Iodination, thyroxine degradation, and estradiol binding are inhibited by azide, cyanide, aminotriazole, methimazole, ascorbic acid and ergothioneine, all of which can inhibit peroxidase-catalyzed reactions. These responses of the sea urchin egg to fertilization are strikingly similar to the changes induced in polymorphonuclear leukocytes by phagocytosis and, in both instances, a peroxidative mechanism may be involved.


1997 ◽  
Vol 110 (14) ◽  
pp. 1555-1561 ◽  
Author(s):  
J. Avery ◽  
A. Hodel ◽  
M. Whitaker

Sea urchin eggs provide an efficient in vitro model of exocytosis. We have identified proteins in sea urchin eggs that cross-react with antibodies to mammalian synaptobrevin, synaptotagmin, SNAP-25, syntaxin and rab3a. We show that these proteins are localized to the sea urchin egg cortex, using western blotting and immunocytochemistry. Tetanus toxin light chain cleaves the synaptobrevin-related protein in vitro and inhibits calcium-induced exocytosis. These data demonstrate a conservation between phyla of protein sequence and molecular mechanisms thought to facilitate exocytosis and show that the sea urchin egg provides a unique in vitro exocytotic model with which to study the conserved protein machinery of membrane fusion during secretion.


1979 ◽  
Vol 83 (1) ◽  
pp. 241-248 ◽  
Author(s):  
D A Begg ◽  
L I Rebhun

The state of actin in the isolated cortex of the unfertilized sea urchin egg can be controlled by experimentally manipulating the pH of the isolation medium. Cortices isolated at the pH of the unfertilized egg (6.5--6.7) do not contain filamentous actin, while those isolated at the pH of the fertilized egg (7.3--7.5) develop large numbers of microvilli which contain bundles of actin filaments. Cortices that are isolated at pH 6.5 and then transferred to isolation medium buffered at pH 7.5 also develop actin filaments. However, the filaments are not arranged in bundles and microvilli do not form. Although the cortical granules in cortices isolated at pH 6.5 discharge at a free Ca++ concentration of approximately 10 micrometer, actin polymerization is not induced by increasing the Ca++ concentration of the isolation medium. These results suggest that the increase in cytoplasmic pH which occurs following fertilization induces the polymerization of actin in the egg cortex.


Nature ◽  
1980 ◽  
Vol 286 (5769) ◽  
pp. 185-186 ◽  
Author(s):  
Judith Campisi ◽  
Carl J. Scandella

1996 ◽  
Vol 315 (3) ◽  
pp. 721-725 ◽  
Author(s):  
Armando A. GENAZZANI ◽  
Antony GALIONE

Nicotinic acid–adenine dinucleotide phosphate (NAADP) is a novel intracellular Ca2+ releasing agent recently described in sea-urchin eggs and egg homogenates. Ca2+ release by NAADP is independent of that induced by either inositol trisphosphate (InsP3) or cyclic adenosine dinucleotide phosphate (cADPR). We now report that in sea urchin egg homogenates, NAADP releases Ca2+ from a Ca2+ pool that is distinct from those that are sensitive to InsP3 and cADPR. This organelle has distinct Ca2+ uptake characteristics: it is insensitive to thapsigargin and cyclopiazoic acid, but maintenance of the pool shows some requirement for ATP. Although the different Ca2+ pools have different characteristics, there appears to be some degree of overlap or cross-talk between the NAADP- and cADPR/InsP3-sensitive Ca2+ pools. Ca2+-induced Ca2+ release is unlikely to account for the apparent overlap between stores, since NAADP-induced Ca2+ release, in contrast with that stimulated by cADPR, is not potentiated by bivalent cations.


1992 ◽  
Vol 34 (1) ◽  
pp. 37-42 ◽  
Author(s):  
C. Sardet ◽  
I. Gillot ◽  
A. Ruscher ◽  
P. Payan ◽  
J.-P. Girard ◽  
...  

1996 ◽  
Vol 134 (2) ◽  
pp. 329-338 ◽  
Author(s):  
S S Vogel ◽  
P S Blank ◽  
J Zimmerberg

We have investigated the consequences of having multiple fusion complexes on exocytotic granules, and have identified a new principle for interpreting the calcium dependence of calcium-triggered exocytosis. Strikingly different physiological responses to calcium are expected when active fusion complexes are distributed between granules in a deterministic or probabilistic manner. We have modeled these differences, and compared them with the calcium dependence of sea urchin egg cortical granule exocytosis. From the calcium dependence of cortical granule exocytosis, and from the exposure time and concentration dependence of N-ethylmaleimide inhibition, we determined that cortical granules do have spare active fusion complexes that are randomly distributed as a Poisson process among the population of granules. At high calcium concentrations, docking sites have on average nine active fusion complexes.


1954 ◽  
Vol 31 (2) ◽  
pp. 208-217
Author(s):  
MARTYNAS YČAS

1. Activity corresponding to phosphoglucomutase, phosphohexoisomerase, aldolase, triosephosphate dehydrogenase, enolase and lactic dehydrogenase has been demonstrated in homogenates prepared from unfertilized sea-urchin eggs (Strongylocentrotus purpuratus and Lytechinus pictus). 2. The presence of cytochromes a and b1 has been confirmed. These cytochromes sediment in a relatively low centrifugal field. 3. No cytochrome c could be demonstrated, although cytochrome c is both reduced and oxidized by homogenates, and addition of cytochrome c increases the endogenous respiration and oxidation of succinate. 4. These results support the view that the usual glycolytic pathway operates in the sea-urchin egg and is the principal route of oxidation of carbohydrate.


2000 ◽  
Vol 6 (S2) ◽  
pp. 966-967
Author(s):  
Amitabha Chakrabarti ◽  
Heide Schatten

Cortical granules are specialized Golgi-derived membrane-bound secretory granules that are located beneath the plasma membrane in unfertilized sea urchin eggs. Upon fertilization cortical granules discharge in a reaction induced by calcium and release their contents between the plasma membrane and a thin vitelline layer that lines the plasma membrane. Microvilli at the plasma membrane elongate incorporting cortical granule membranes during elongation. The vitelline layer elevates and becomes the egg's fertilization coat that hardens and serves as physical block to polyspermy. While we do not understand the precise mechanisms that participate in cortical granule discharge it is believed that actin plays a role in this process. Because actin and calcium metabolism is affected in aging cells we investigated if cortical granule secretion is affected in aging sea urchin eggs.Lytechinus pictus eggs were obtained by intracoelomic injection of 0.5M KCI to release the eggs into sea water at 23°C.


Sign in / Sign up

Export Citation Format

Share Document