maternal transcripts
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Llilians Calvo ◽  
Maria Birgaoanu ◽  
Tom Pettini ◽  
Matthew Ronshaugen ◽  
Sam Griffiths-Jones

AbstractParhyale hawaiensis has emerged as the crustacean model of choice due to its tractability, ease of imaging, sequenced genome, and development of CRISPR/Cas9 genome editing tools. However, transcriptomic datasets spanning embryonic development are lacking, and there is almost no annotation of non-protein-coding RNAs, including microRNAs. We have sequenced microRNAs, together with mRNAs and long non-coding RNAs, in Parhyale using paired size-selected RNA-seq libraries at seven time-points covering important transitions in embryonic development. Focussing on microRNAs, we annotate 175 loci in Parhyale, 88 of which have no known homologs. We use these data to annotate the microRNAome of 37 crustacean genomes, and suggest a core crustacean microRNA set of around 61 sequence families. We examine the dynamic expression of microRNAs and mRNAs during the maternal-zygotic transition. Our data suggest that zygotic genome activation occurs in two waves in Parhyale with microRNAs transcribed almost exclusively in the second wave. Contrary to findings in other arthropods, we do not predict a general role for microRNAs in clearing maternal transcripts. These data significantly expand the available transcriptomics resources for Parhyale, and facilitate its use as a model organism for the study of small RNAs in processes ranging from embryonic development to regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadja R. Brun ◽  
Matthew C. Salanga ◽  
Francisco X. Mora-Zamorano ◽  
David C. Lamb ◽  
Jared V. Goldstone ◽  
...  

AbstractOrphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish cyp20a1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light–dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.


2021 ◽  
Author(s):  
Konstantin Yakovlev ◽  
Yulia O. Kipryushina ◽  
Mariia A. Maiorova

The sea urchin egg cortex is a peripheral region of eggs consisting of cell membrane and adjacent cytoplasm, which contains actin and tubulin cytoskeleton, cortical granules and some proteins required for early development. Method for isolation of cortices from sea urchin eggs and early embryos has been developed in 70s of 20th Century. Since that time this method has been reliable tool to study protein localization and cytoskeletal organization in cortex of unfertilized eggs and embryos during first cleavages. This study is an estimation of reliability of RT-qPCR to analyze levels of maternal transcripts that are localized in egg cortex. Firstly, we selected seven potential reference genes, 28S, Cycb , Ebr1 , GAPDH , Hmg1 , Smtnl1 and Ubb , which transcripts are maternally deposited in sea urchin eggs. The candidate reference genes were ranked by five different algorithms (BestKeeper, CV, ΔCt, geNorm and NormFinder) upon calculated level stability in both eggs and isolated cortices. Our results show that gene ranking differs in total RNA and mRNA samples, though Ubb is most suitable reference gene in both cases. To validate feasibility of comparative analysis of eggs and isolated egg cortices by RT-qPCR, we selected Daglb-2 as a gene of interest, which transcripts potentially localized in cortex, and found increased level of Daglb -2 in egg cortices. This suggests that proposed RNA isolation method with subsequent quantitative RT-qPCR analysis can be used to approve cortical association of transcripts in sea urchin eggs.


2021 ◽  
Author(s):  
Sheila Q Xie ◽  
Bryony J Leeke ◽  
Chad Whilding ◽  
Ryan T Wagner ◽  
Ferran Garcia-Llagostera ◽  
...  

Upon fertilisation, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice involves the transient upregulation of MERVL transposons and MERVL-driven genes at the 2-cell stage. The mechanisms and requirement for MERVL and 2-cell (2C) gene upregulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow 2-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and 2-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking Pol I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper Dux silencing and leads to 2-4 cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation and gene repression during early development.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erin Chille ◽  
Emma Strand ◽  
Mayaan Neder ◽  
Valeria Schmidt ◽  
Madeleine Sherman ◽  
...  

Abstract Background Maternal mRNA provisioning of oocytes regulates early embryogenesis. Maternal transcripts are degraded as zygotic genome activation (ZGA) intensifies, a phenomenon known as the maternal-to-zygotic transition (MZT). Here, we examine gene expression over nine developmental stages in the Pacific rice coral, Montipora capitata, from eggs and embryos at 1, 4, 9, 14, 22, and 36 h-post-fertilization (hpf), as well as swimming larvae (9d), and adult colonies. Results Weighted Gene Coexpression Network Analysis revealed four expression peaks, identifying the maternal complement, two waves of the MZT, and adult expression. Gene ontology enrichment revealed maternal mRNAs are dominated by cell division, methylation, biosynthesis, metabolism, and protein/RNA processing and transport functions. The first MZT wave occurs from ~4-14 hpf and is enriched in terms related to biosynthesis, methylation, cell division, and transcription. In contrast, functional enrichment in the second MZT wave, or ZGA, from 22 hpf-9dpf, includes ion/peptide transport and cell signaling. Finally, adult expression is enriched for functions related to signaling, metabolism, and ion/peptide transport. Our proposed MZT timing is further supported by expression of enzymes involved in zygotic transcriptional repression (Kaiso) and activation (Sox2), which peak at 14 hpf and 22 hpf, respectively. Further, DNA methylation writing (DNMT3a) and removing (TET1) enzymes peak and remain stable past ~4 hpf, suggesting that methylome programming occurs before 4 hpf. Conclusions Our high-resolution insight into the coral maternal mRNA and MZT provides essential baseline information to understand parental carryover effects and the sensitivity of developmental success under increasing environmental stress.


2021 ◽  
Author(s):  
Anna A Feitzinger ◽  
Anthony Le ◽  
Ammon Thompson ◽  
Mehnoor Haseeb ◽  
Mohan K Murugesan ◽  
...  

Maternal gene products supplied to the egg during oogenesis drive the earliest events of development in all metazoans. After the initial stages of embryogenesis, maternal transcripts are degraded as zygotic transcription is activated, this is known as the maternal to zygotic transition (MZT). Altering the abundances of maternally deposited factors in the laboratory can have a dramatic effect on development, adult phenotypes and ultimately fitness. Zygotic transcription activation is a tightly regulated process, where the zygotic genome takes over control of development from the maternal genome, and is required for the viability of the organism. Recently, it has been shown that the expression of maternal and zygotic transcripts have evolved in the Drosophila genus over the course of 50 million years of evolution. However, the extent of natural variation of maternal and zygotic transcripts within a species has yet to be determined. We asked how the maternal and zygotic pools of mRNA vary within and between populations of D. melanogaster. In order to maximize sampling of genetic diversity, African lines of D. melanogaster originating from Zambia as well as DGRP lines originating from North America were chosen for transcriptomic analysis. Single embryo RNA-seq was performed at a stage before and a stage after zygotic genome activation in order to determine which transcripts are maternally deposited and which are zygotically expressed within and between these populations. Differential gene expression analysis has been used to quantify quantitative changes in RNA levels within populations as well as fixed expression differences between populations at both stages. Generally, we find that maternal transcripts are more highly conserved, and zygotic transcripts evolve at a higher rate. We find that there is more within population variation in transcript abundance than between populations and that expression variation is highest post- MZT between African lines. Determining the natural variation of gene expression surrounding the MZT in natural populations of D. melanogaster gives insight into the extent of how a tightly regulated process may vary within a species, the extent of developmental constraint at both stages and on both the maternal and zygotic genomes, and reveals expression changes allowing this species to adapt as it spread across the world.


2021 ◽  
Vol 9 (3) ◽  
pp. 37
Author(s):  
Georgy P. Maslakov ◽  
Nikita S. Kulishkin ◽  
Alina A. Surkova ◽  
Milana A. Kulakova

Hox genes are some of the best studied developmental control genes. In the overwhelming majority of bilateral animals, these genes are sequentially activated along the main body axis during the establishment of the ground plane, i.e., at the moment of gastrulation. Their activation is necessary for the correct differentiation of cell lines, but at the same time it reduces the level of stemness. That is why the chromatin of Hox loci in the pre-gastrulating embryo is in a bivalent state. It carries both repressive and permissive epigenetic markers at H3 histone residues, leading to transcriptional repression. There is a paradox that maternal RNAs, and in some cases the proteins of the Hox genes, are present in oocytes and preimplantation embryos in mammals. Their functions should be different from the zygotic ones and have not been studied to date. Our object is the errant annelid Platynereis dumerilii. This model is convenient for studying new functions and mechanisms of regulation of Hox genes, because it is incomparably simpler than laboratory vertebrates. Using a standard RT-PCR on cDNA template which was obtained by reverse transcription using random primers, we found that maternal transcripts of almost all Hox genes are present in unfertilized oocytes of worm. We assessed the localization of these transcripts using WMISH.


Author(s):  
Yusheng Liu ◽  
Keliang Wu ◽  
Fanghong Shao ◽  
Hu Nie ◽  
Jingye Zhang ◽  
...  

AbstractPoly(A) tail-mediated post-transcriptional regulation of maternal mRNA has been shown to be vital in the oocyte-to-embryo transition (OET) in flies, fish, frogs, and mice1–8. However, nothing is known about poly(A) tail dynamics for even a single gene during the human OET, because of the limited availability of human oocytes and embryos in combination with the low sensitivity of previous methods. Here, we systematically profiled the transcriptome-wide mRNA poly(A) tails in human oocytes at the germ-vesicle (GV), metaphase I (MI), and metaphase II (MII) stages, as well as pre-implantation embryos at the 1-cell (1C), 2-cell (2C), 4-cell (4C), 8-cell (8C), morula (MO), and blastocyst (BL) stages using single-oocyte/embryo PAIso-seq1 and PAIso-seq2 methods. We show that poly(A) tail length is highly dynamic during the OET, with BTG4 responsible for global deadenylation. Moreover, we reveal that non-A residues occur primarily in poly(A) tails of maternal RNA, which begin to increase at the MI stage, become highly abundant after fertilization (with U residues occurring in about two thirds, G residues in about one third, and C residues in about one fifth of mRNAs), and decline at the 8C stage. Importantly, we reveal that TUT4/7 can add U residues to deadenylated mRNA, which can then be re- polyadenylated to produce 5′-end and internal U residues. In addition, the re- polyadenylated mRNA can be stabilized through the addition of G residues by TENT4A/B. Finally, we demonstrate that U residues in poly(A) tails mark the maternal transcripts for quicker degradation in 8C human embryos compared to those without U residues. Together, our results not only reveal the dynamics of poly(A) tail length and non-A residues, but also provide mechanistic insights into the regulation of the length and the role of non-A residues during human OET. These findings further scientific understanding and open a new door for studying the human OET.


Author(s):  
László Tora ◽  
Stéphane D. Vincent

In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.


2021 ◽  
Author(s):  
Nadja R Brun ◽  
Matthew C Salanga ◽  
Francisco X Mora-Zamorano ◽  
David C Lamb ◽  
Jared V Goldstone ◽  
...  

Orphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish CYP20A1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light-dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.


Sign in / Sign up

Export Citation Format

Share Document