scholarly journals Production of novel Spike truncations in Chinese hamster ovary cells

2021 ◽  
Author(s):  
Shiaki A. Minami ◽  
Seongwon Jung ◽  
Yihan Huang ◽  
Bradley S. Harris ◽  
Matthew W. Kenaston ◽  
...  

AbstractSARS-CoV-2 Spike is a key protein that mediates viral entry into cells and elicits antibody responses. Its importance in infection, diagnostics, and vaccinations has created a large demand for purified Spike for clinical and research applications. Spike is difficult to express, prompting modifications to the protein and expression platforms to improve yields. Alternatively, Spike receptor binding domain (RBD) is commonly expressed with higher titers, though it has lower sensitivity in serological assays. Here, we improve transient Spike expression in Chinese hamster ovary (CHO) cells. We demonstrate that Spike titers increase significantly over the expression period, maximizing at 14 mg/L at day 7. In comparison, RBD titers peak at 54 mg/L at day 3. Next, we develop 8 Spike truncations (T1-T8) in pursuit of a truncation with high expression and antibody binding. The truncations T1 and T4 express at 130 mg/L and 73 mg/L, respectively, which are higher than our RBD titers. Purified proteins were evaluated for binding to antibodies raised against full-length Spike. T1 has similar sensitivity as Spike against a monoclonal antibody and even outperforms Spike for a polyclonal antibody. These results suggest T1 is a promising Spike alternative for use in various applications.

Author(s):  
Sai Rashmika Velugula-Yellela ◽  
David N. Powers ◽  
Phillip Angart ◽  
Anneliese Faustino ◽  
Talia Faison ◽  
...  

2015 ◽  
Vol 120 (3) ◽  
pp. 340-346 ◽  
Author(s):  
Takeshi Okumura ◽  
Kenji Masuda ◽  
Kazuhiko Watanabe ◽  
Kenji Miyadai ◽  
Koichi Nonaka ◽  
...  

2012 ◽  
Vol 109 (12) ◽  
pp. 3103-3111 ◽  
Author(s):  
William Pooi Kat Chong ◽  
Shu Hui Thng ◽  
Ai Ping Hiu ◽  
Dong-Yup Lee ◽  
Eric Chun Yong Chan ◽  
...  

2015 ◽  
Vol 120 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Shohei Kishishita ◽  
Satoshi Katayama ◽  
Kunihiko Kodaira ◽  
Yoshinori Takagi ◽  
Hiroki Matsuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document