scholarly journals Assessing the utility of marine filter feeders for environmental DNA (eDNA) biodiversity monitoring

2021 ◽  
Author(s):  
Gert-Jan Jeunen ◽  
Jasmine S Cane ◽  
Sara Ferreira ◽  
Francesca Strano ◽  
Ulla von Ammon ◽  
...  

Aquatic environmental DNA (eDNA) surveys are transforming how we monitor marine ecosystems. The time-consuming pre-processing step of active filtration, however, remains a bottleneck. Hence, new approaches omitting active filtration are in great demand. One exciting prospect is to use the filtering power of invertebrates to collect eDNA. While proof-of-concept has been achieved, comparative studies between aquatic and filter feeder eDNA signals are lacking. Here, we investigated the differences among four eDNA sources (water; bivalves; sponges; and ethanol in which filter-feeding organisms were stored) along a vertical transect in Doubtful Sound, New Zealand using three metabarcoding primers (fish (16S); MiFish-E/U). While concurrent SCUBA diver observations validated eDNA results, laboratory trials corroborated in-field bivalve eDNA detection results. Combined, eDNA sources detected 59 vertebrates, while divers observed eight fish species. There were no significant differences in alpha and beta diversity between water and sponge eDNA and both sources were highly correlated. Vertebrate eDNA was detected in ethanol, although only a reduced number of species were detected. Bivalves failed to reliably detect eDNA in both field and mesocosm experiments. While additional research into filter feeder eDNA accumulation efficiency is essential, our results provide strong evidence for the potential of incorporating sponges into eDNA surveys.

Author(s):  
Naiara Rodríguez‐Ezpeleta ◽  
Lucie Zinger ◽  
Andrew Kinziger ◽  
Holly M. Bik ◽  
Aurélie Bonin ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 2339
Author(s):  
Aleksei O. Zverev ◽  
Arina A. Kichko ◽  
Aleksandr G. Pinaev ◽  
Nikolay A. Provorov ◽  
Evgeny E. Andronov

The rhizosphere community represents an “ecological interface” between plant and soil, providing the plant with a number of advantages. Despite close connection and mutual influence in this system, the knowledge about the connection of plant and rhizosphere diversity is still controversial. One of the most valuable factors of this uncertainty is a rough estimation of plant diversity. NGS sequencing can make the estimations of the plant community more precise than classical geobotanical methods. We investigate fallow and crop sites, which are similar in terms of environmental conditions and soil legacy, yet at the same time are significantly different in terms of plant diversity. We explored amplicons of both the plant root mass (ITS1 DNA) and the microbial communities (16S rDNA); determined alpha- and beta-diversity indices and their correlation, and performed differential abundance analysis. In the analysis, there is no correlation between the alpha-diversity indices of plants and the rhizosphere microbial communities. The beta-diversity between rhizosphere microbial communities and plant communities is highly correlated (R = 0.866, p = 0.01). ITS1 sequencing is effective for the description of plant root communities. There is a connection between rhizosphere communities and the composition of plants, but on the alpha-diversity level we found no correlation. In the future, the connection of alpha-diversities should be explored using ITS1 sequencing, even in more similar plant communities—for example, in different synusia.


2021 ◽  
Vol 4 ◽  
Author(s):  
PJ Stephenson

Evidence-based decision-making in conservation and natural resource management is often constrained by lack of robust biodiversity data. Technology offers opportunities for enhanced data collection, with satellite-based remote sensing increasingly complemented by Earth-based sensors such as camera traps, acoustic recording devices and drones. In aquatic as well as terrestrial systems, environmental DNA is increasingly promoted as a tool to monitor species diversity and community composition. But if conservationists and natural resource managers are to know when to use eDNA, they need to understand its relative advantages and disadvantages, and when it can be used with or instead of other tools. In this paper, I expand on two recent publications (Stephenson 2020; Stephenson et al. 2020) to review lessons learned from the application of eDNA, especially metabarcoding, to the monitoring of aquatic biodiversity for conservation and to identify factors affecting its relevance and applicability. Over the past decade there have been many advances in technological solutions for biodiversity monitoring. eDNA and various remote sensing tools offer opportunities to create the enabling conditions for enhanced biodiversity monitoring, and are becoming cheaper and easier to use for scientists, public and private sector resource managers, and citizen scientists. Nonetheless, a number of challenges need to be addressed to, for example, improve the standardisation of tool use and to enhance capacity for the use, storage, sharing and analysis of huge volumes of data, especially in high-biodiversity countries. More studies comparing the relative efficiency and cost-effectiveness of different tools with different species in different habitats would help managers choose the right tools for their needs and capacity and better integrate them into monitoring schemes. eDNA is becoming the go-to option for the monitoring of aquatic species diversity and community composition and has also proven successful in some terrestrial settings. eDNA is especially useful for monitoring species that are in low densities or difficult to observe with traditional observer-based methods; indeed, several studies show eDNA metabarcoding techniques have a much better detection probability overall for taxa such as amphibians and fish. In some cases, eDNA has been shown to complement other tools when used together, by either increasing animal detection probabilities or increasing the number of indicators that can be measured at one site. This suggests that, in future, more effort should be made to test the effectiveness of integrating eDNA with one or more other tools to enhance the efficiency and effectiveness of measuring indicators and to increase the diversity of species detected. For example, eDNA could be combined with camera traps for monitoring vertebrates visiting waterholes. Testing multiple tools would also provide better opportunity to quantify when and how traditional observer-based methods can complement the technological solutions and when they are more cost-effective. However, it is noteworthy that, in general, the taxa for which data are most lacking, such as invertebrates, plants and fungi, are still those less easily monitored by eDNA and other new technologies. This suggests a focus only on technological solutions for biodiversity monitoring may perpetuate existing taxonomic data biases. I conclude by discussing the international policy context and the relevance of eDNA for monitoring global biodiversity indicators. Several opportunities exist to integrate eDNA into monitoring programmes to measure government, business and civil society contributions towards delivery of the post-2020 global biodiversity framework and the Sustainable Development Goals.


2018 ◽  
Vol 1 ◽  
Author(s):  
Nicole White ◽  
Michelle Guzik ◽  
Steven Cooper ◽  
Andrew Austin ◽  
Michael Bunce

Biological organisms living in any environment can expel DNA into their surroundings through fecal matter, mucus, shed skin, gametes, etc. Here we examine the utility of metabarcoding from a variety of environmental DNA (eDNA) substrates collected from the Pilbara region, Western Australia, to assess the feasibility for both stygo- and troglofauna detection. With metabarcoding, we confirm eDNA from both stygo- and troglofauna is detectable via molecules. In addition, our proof-of-concept and validation of using an eDNA approach was confirmed when both traditional morphological and metabarcoding assessments were compared. The metabarcoding results from the eDNA substrates are very encouraging when compared to the results of traditional morphological assessments, although highlighted the need for comprehensive DNA reference databases to be accessible for metabarcoding comparisons in order to obtain species identifications and community assemblage profiles. Furthermore, our results indicate a standardised field sampling collection method is warranted in order to maximise the success of subterranean eDNA detection from environmental substrates. eDNA data collected suggest metabarcoding approaches will become a powerful part of the toolkit to study subterranean fauna.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11030
Author(s):  
Elizabeth L. Clare ◽  
Chloe K. Economou ◽  
Chris G. Faulkes ◽  
James D. Gilbert ◽  
Frances Bennett ◽  
...  

Environmental DNA (eDNA) is one of the fastest developing tools for species biomonitoring and ecological research. However, despite substantial interest from research, commercial and regulatory sectors, it has remained primarily a tool for aquatic systems with a small amount of work in substances such as soil, snow and rain. Here we demonstrate that eDNA can be collected from air and used to identify mammals. Our proof of concept successfully demonstrated that eDNA sampled from air contained mixed templates which reflect the species known to be present within a confined space and that this material can be accessed using existing sampling methods. We anticipate this demonstration will initiate a much larger research programme in terrestrial airDNA sampling and that this may rapidly advance biomonitoring approaches. Lastly, we outline these and potential related applications we expect to benefit from this development.


2020 ◽  
Author(s):  
Alessia Guerrieri ◽  
Aur lie Bonin ◽  
Tamara M nkem ller ◽  
Ludovic Gielly ◽  
Wilfried Thuiller ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
pp. 732-745 ◽  
Author(s):  
Mieke Heyde ◽  
Michael Bunce ◽  
Grant Wardell‐Johnson ◽  
Kristen Fernandes ◽  
Nicole E. White ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 454 ◽  
Author(s):  
Medina ◽  
Rüter ◽  
Pujol ◽  
Kip ◽  
Masons ◽  
...  

This paper provides a generic way to fabricate a high-index contrast tapered waveguide platform based on dielectric crystal bonded on glass for sensing applications. As a specific example, KLu(WO4)2 crystal on a glass platform is made by means of a three-technique combination. The methodology used is on-chip bonding, taper cutting with an ultra-precise dicing saw machine and inductively coupled plasma-reactive ion etching (ICP-RIE) as a post-processing step. The high quality tapered waveguides obtained show low surface roughness (25 nm at the top of the taper region), exhibiting propagation losses estimated to be about 3 dB/cm at 3.5 m wavelength. A proof-of-concept with crystal-on-glass tapered waveguides was realized and used for chemical sensing.


2015 ◽  
Vol 96 (6) ◽  
pp. 1201-1210 ◽  
Author(s):  
Martin Bruschetti ◽  
Tomas Luppi ◽  
Oscar Iribarne

Depletion of phytoplankton biomass by the introduced reef-forming polychaete Ficopomatus enigmaticus has previously been observed in the Mar Chiquita lagoon (37°40′S 57°23′W; Argentina), but the effect of polychaetes on the higher trophic levels is still unknown. To evaluate the effect of this polychaete on the zooplankton assemblage, replicated mesocosm experiments (N = 10) were performed during spring, summer and winter. Mesocosms with reefs and without reefs were installed and grazing intensity and the effect on the zooplankton assemblage by the polychaetes were assessed. Our results show that the reefs of F. enigmaticus generate minor changes in overall composition of zooplankton assemblage. Although the structure of the zooplankton assemblage was different between seasons, the impact of the reefs was not significant in any of them. There was no relationship between the decline of food resource by grazing and changes in the structure of the zooplankton assemblage. Thus, contrary to our hypothesis, the grazing impact of the invasive polychaete on the biomass of primary producers did not generate cascading effects to higher trophic levels. However, changes in some components of the zooplankton assemblage (e.g. cladocerans) clearly show that the reefs of F. enigmaticus have the potential to affect the structure of the zooplankton community. The lack of data of community composition and abundance of zooplankton before the invasion limits the understanding of how this polychaete might have affected the structure and abundance of the zooplankton of this lagoon. Nevertheless this work suggests that these changes may not be so significant.


2020 ◽  
Author(s):  
Miguel Loera-Sánchez ◽  
Bruno Studer ◽  
Roland Kölliker

Abstract Objective Grasslands are widespread ecosystems that fulfil many functions. Plant species richness (PSR) is known to have beneficial effects on such functions and monitoring PSR is crucial for tracking the effects of land use and agricultural management on these ecosystems. Unfortunately, traditional morphology-based methods are labor-intensive and cannot be adapted for high-throughput assessments. DNA barcoding could aid increasing the throughput of PSR assessments in grasslands. In this proof-of-concept work, we aimed at determining which of three plant DNA barcodes ( rbcLa , matK and trnH-psbA ) best discriminates 16 key grass and legume species common in temperate sub-alpine grasslands. Results Barcode trnH-psbA had a 100% correct assignment rate (CAR) in the five analyzed legumes, followed by rbcLa (93.3%) and matK (55.6%). Barcode trnH-psbA had a 100% CAR in the grasses Cynosurus cristatus , Dactylis glomerata and Trisetum flavescens . However, the closely related Festuca, Lolium and Poa species were not always correctly identified, which led to an overall CAR in grasses of 66.7%, 50.0% and 46.4% for trnH-psbA , matK and rbcLa , respectively. Barcode trnH-psbA is thus the most promising candidate for PSR assessments in permanent grasslands and could greatly support plant biodiversity monitoring on a larger scale.


Sign in / Sign up

Export Citation Format

Share Document