scholarly journals Bulk and spatially resolved extracellular metabolomics of free-living nitrogen fixation

2022 ◽  
Author(s):  
Darian Smercina ◽  
Young-Mo Kim ◽  
Mary Lipton ◽  
Dusan Velickovic ◽  
Kirsten Hofmockel

Soil microorganisms drive ecosystem function, but challenges of scale between microbe and ecosystem hinder our ability to accurately quantify and predictively model the soil microbe-ecosystem function relationship. Quantifying this relationship necessitates studies that systematically characterize multi-omics of soil microorganisms and their activity across sampling scales from spatially resolved to bulk measures, and structural complexity, from liquid pure culture to in situ. To address this need, we cultured two diazotrophic bacteria in liquid and solid media, with and without nitrogen (N) to quantify differences in extracellular metabolites associated with nitrogen fixation under increasing environmental structural complexity. We also quantified extracellular metabolites across sampling scales including bulk sampling via GC-MS analysis and spatially resolved analysis via MALDI mass spectrometry imaging. We found extracellular production of inorganic and organic N during free-living nitrogen fixation activity, highlighting a key mechanism of terrestrial N contributions from this process. Additionally, our results emphasize the need to consider the structural complexity of the environment and spatial scale when quantifying microbial activity. We found differences in metabolite profiles between culture conditions, supporting previous work indicating environmental structure influences microbial function, and across scales, underscoring the need to quantify microbial scale conditions to accurately interpret microbial function.

Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 354-360 ◽  
Author(s):  
San Chiun Shen ◽  
Shui Ping Wang ◽  
Guan Qiao Yu ◽  
Jia Bi Zhu

Genes that specify nodulation (nod genes) are only active in the free-living rhizobia or in the nodule initiation state of rhizobia. As soon as the repression of nod genes occurs in the bacteroids of the nodule, nifA is induced, while ntrC is inactivated and thus the nifA-mediated nif/fix genes are turned on. Limitation of available oxygen brings about the induction of nifA, which reflects the actual status of nif/fix gene activities in symbiotic state of rhizobia. Oxygen thus appears to be a major symbiotic signal to the expression of bacteroid nif/fix genes. Mutation of nifA or shortage of nifA product in wild-type rhizobia caused by the inhibition of multicopy nifH/fixA promoters leads to an abnormal development of nodules and premature degradation of bacteroids in nodules.Key words: nitrogen fixation, nodulation, nif/fix regulation, nifA mutant.


2013 ◽  
Vol 75 (1) ◽  
pp. 130-145 ◽  
Author(s):  
Hui Ye ◽  
Erin Gemperline ◽  
Muthusubramanian Venkateshwaran ◽  
Ruibing Chen ◽  
Pierre-Marc Delaux ◽  
...  

2000 ◽  
Vol 13 (12) ◽  
pp. 1283-1292 ◽  
Author(s):  
Lourdes Girard ◽  
Susana Brom ◽  
Araceli Dávalos ◽  
Oswaldo López ◽  
Mario Soberón ◽  
...  

Among the complexities in the regulation of nitrogen fixation in the Rhizobiaceae are reiteration of regulatory components as well as variant roles for each component between species. For Rhizobium etli CFN42, we reported that the symbiotic plasmid (pCFN42d) contains a key regulatory gene (fixKd) and genes for a symbiotic cytochrome oxidase (fixNOQPd). Here we discuss the occurrence of reiteration of these genes (fixKf and fixNOQPf) and the finding of an unusual fixL homolog on a plasmid previously considered cryptic (pCFN42f). The structure of the deduced FixL polypeptide is suggestive of a fusion of the receiver and transmitter modules of a two-component regulatory system as described in R. leguminosarum bv. viciae VF39. Gene fusion analysis, coupled with mutation of each regulatory element, revealed that free-living expression of FixKf was dependent fully on FixL. In contrast, synthesis of FixKd was not detected under the conditions tested. The FixKf protein is needed for microaerobic expression of both fixN reiterations, whereas the FixKd protein appears to be dispensable. Interestingly, expression of the fixN reiterations exhibits a differential dependence for FixL, where transcription of fixNf was suppressed in the absence of FixL but expression of fixNd still showed significant levels. This suggests the existence of a FixL-independent mechanism for expression of the fixNd reiteration. Surprisingly, mutations in fixL, fixKd, or fixKf (either singly or in combination) did not alter symbiotic effectiveness. A mutation in fixNd (but not in fixNf) was, however, severely affected, indicating a differential role for these reiterations in nitrogen fixation.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Frances Patricia Jones ◽  
Ian M. Clark ◽  
Robert King ◽  
Liz J. Shaw ◽  
Martin J. Woodward ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document