scholarly journals Binding of the integrated stress response inhibitor, ISRIB, reveals a regulatory site in the nucleotide exchange factor, elF2B

2017 ◽  
Author(s):  
Alisa F. Zyryanova ◽  
Félix Weis ◽  
Alexandre Faille ◽  
Akeel Abo Alard ◽  
Ana Crespillo-Casado ◽  
...  

AbstractThe Integrated Stress Response (ISR) is a conserved eukaryotic translational and transcriptional program implicated in mammalian metabolism, memory and immunity. The ISR is mediated by stress-induced phosphorylation of translation initiation factor 2 (eIF2) that attenuates the guanine nucleotide exchange factor eIF2B. A chemical inhibitor of the ISR, ISRIB, a bis-O-arylglycolamide, reverses the attenuation of eIF2B by phosphorylated eIF2, protecting mice from neurodegeneration and traumatic brain injury. We report on a cryo-electron microscopy-based structure of ISRIB-bound human eIF2B revealing an ISRIB-binding pocket at the interface between the β and δ regulatory subunits. CRISPR/Cas9 mutagenesis of residues lining this pocket altered the hierarchical cellular response to ISRIB congeners in vivo and ISRIB-binding in vitro, thus providing chemogenetic support for the functional relevance of ISRIB binding at a distance from known eIF2-eIF2B interaction sites. Our findings point to a hitherto unexpected allosteric site in the eIF2B decamer exploited by ISRIB to regulate translation.

2021 ◽  
Author(s):  
Lan Wang ◽  
Morgane Boone ◽  
Rosalie E Lawrence ◽  
Adam Frost ◽  
Peter Walter ◽  
...  

AbstractIn eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Translational control is primarily exerted through a conformational switch in eIF2’s nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2. Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B’s β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed (Schoof et al. 2021) A/I-State model of allosteric ISR regulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Schoof ◽  
Lan Wang ◽  
J. Zachery Cogan ◽  
Rosalie E. Lawrence ◽  
Morgane Boone ◽  
...  

AbstractViral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2’s dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 30 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα mediated by five ‘aromatic fingers’. NSs binding preserves eIF2B activity by maintaining eIF2B’s conformation in its active A-State.


2021 ◽  
Author(s):  
Michael Schoof ◽  
Lan Wang ◽  
J Zachery Cogan ◽  
Rosalie Lawrence ◽  
Morgane Boone ◽  
...  

Viral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2's dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 43 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα; mediated by five 'aromatic fingers'. NSs binding preserves eIF2B activity by maintaining eIF2B's conformation in its active A-State.;


2018 ◽  
Author(s):  
Aditya A Anand ◽  
Lillian R Kenner ◽  
Henry C Nguyen ◽  
Alexander G Myasnikov ◽  
Carolin J Klose ◽  
...  

The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a GTPase, that becomes activated by eIF2B, a large two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from substrate into an inhibitor of eIF2B. We report cryoEM structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's catalytic centers to catalyze guanine nucleotide exchange. Phosphorylation refolds eIF2, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequesters it into a non-productive complex.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. 491-495 ◽  
Author(s):  
Lillian R. Kenner ◽  
Aditya A. Anand ◽  
Henry C. Nguyen ◽  
Alexander G. Myasnikov ◽  
Carolin J. Klose ◽  
...  

The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a guanosine triphosphatase that becomes activated by eIF2B, a two-fold symmetric and heterodecameric complex that functions as eIF2’s dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from a substrate into an inhibitor of eIF2B. We report cryo–electron microscopy structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B’s bipartite catalytic centers to catalyze nucleotide exchange. Phosphorylation refolds eIF2α, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequestering it into a nonproductive complex.


2020 ◽  
Author(s):  
Alisa F. Zyryanova ◽  
Kazuhiro Kashiwagi ◽  
Claudia Rato ◽  
Heather P. Harding ◽  
Ana Crespillo-Casado ◽  
...  

AbstractThe small molecule ISRIB antagonises the activation of the integrated stress response (ISR) by phosphorylated translation initiation factor 2, eIF2(αP). ISRIB and eIF2(αP) bind distinct sites in their common target, eIF2B, a guanine nucleotide exchange factor (GEF) for eIF2. We have found that ISRIB-mediated acceleration of eIF2B activity in vitro is observed preferentially in the presence of eIF2(αP) and is attenuated by mutations that desensitise eIF2B to the inhibitory effects of eIF2(αP). ISRIB’s efficacy as an ISR inhibitor in cells also depends on presence of eIF2(αP). Cryo-EM showed that engagement of both eIF2B regulatory sites by two eIF2(αP) molecules remodels both the ISRIB-binding pocket and the pockets that would engage eIF2α during active nucleotide exchange, thereby discouraging both binding events. In vitro, eIF2(αP) and ISRIB reciprocally opposed each other’s binding to eIF2B. These findings point to antagonistic allostery in ISRIB action on eIF2B, culminating in inhibition of the ISR.


Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. 1533-1536 ◽  
Author(s):  
Alisa F. Zyryanova ◽  
Félix Weis ◽  
Alexandre Faille ◽  
Akeel Abo Alard ◽  
Ana Crespillo-Casado ◽  
...  

The integrated stress response (ISR) is a conserved translational and transcriptional program affecting metabolism, memory, and immunity. The ISR is mediated by stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) that attenuates the guanine nucleotide exchange factor eIF2B. A chemical inhibitor of the ISR, ISRIB, reverses the attenuation of eIF2B by phosphorylated eIF2α, protecting mice from neurodegeneration and traumatic brain injury. We describe a 4.1-angstrom-resolution cryo–electron microscopy structure of human eIF2B with an ISRIB molecule bound at the interface between the β and δ regulatory subunits. Mutagenesis of residues lining this pocket altered the hierarchical cellular response to ISRIB analogs in vivo and ISRIB binding in vitro. Our findings point to a site in eIF2B that can be exploited by ISRIB to regulate translation.


2020 ◽  
Author(s):  
Michael Schoof ◽  
Morgane Boone ◽  
Lan Wang ◽  
Rosalie Lawrence ◽  
Adam Frost ◽  
...  

AbstractThe integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2’s nucleotide exchange factor eIF2B, a two-fold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B’s α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing an allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-EM structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into ‘conjoined tetramers’ with greatly diminished activity. Thus, ISRIB’s effects in disease models could arise from eIF2B decamer stabilization, allosteric modulation, or both.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael Schoof ◽  
Morgane Boone ◽  
Lan Wang ◽  
Rosalie Lawrence ◽  
Adam Frost ◽  
...  

The integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2's nucleotide exchange factor eIF2B, a two-fold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B's α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-EM structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into 'conjoined tetramers' with diminished substrate binding and enzymatic activity. Canonical eIF2-P-driven ISR activation thus arises due to this change in eIF2B's conformational state.


Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. eaaq0939 ◽  
Author(s):  
Jordan C. Tsai ◽  
Lakshmi E. Miller-Vedam ◽  
Aditya A. Anand ◽  
Priyadarshini Jaishankar ◽  
Henry C. Nguyen ◽  
...  

Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo–electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB.


Sign in / Sign up

Export Citation Format

Share Document