allosteric site
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 203)

H-INDEX

39
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cláudia Régio Brambilla ◽  
Tanja Veselinović ◽  
Ravichandran Rajkumar ◽  
Jörg Mauler ◽  
Andreas Matusch ◽  
...  

AbstractCurrently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall’s W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Daniel L. Hurdiss ◽  
Priscila El Kazzi ◽  
Lisa Bauer ◽  
Nicolas Papageorgiou ◽  
François P. Ferron ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 223
Author(s):  
Shah Faisal ◽  
Syed Lal Badshah ◽  
Bibi Kubra ◽  
Mohamed Sharaf ◽  
Abdul-Hamid Emwas ◽  
...  

The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme’s allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.


Author(s):  
Jorge Enrique Hernández González ◽  
Lucas N. Alberca ◽  
Yordanka Masforrol González ◽  
Osvaldo Reyes Acosta ◽  
Alan Talevi ◽  
...  

Inorganics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Facundo Tarasi ◽  
Priscila Ailín Lanza ◽  
Valeria Ferretti ◽  
Gustavo Alberto Echeverría ◽  
Oscar Enrique Piro ◽  
...  

The main goal of this work was to report the synthesis, characterization, and cytotoxicity study of a novel copper(II)-sunitinib complex, CuSun. It has been synthesized and characterized in solid state and in solution by different methods (such as DFT, FTIR, Raman, UV-vis, EPR, NMR, etc.). The solid-state molecular structure of trichlorosunitinibcopper(II), where sunitinib: N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, for short Cu(Sun)Cl3, was determined by X-ray diffraction. It crystallizes in the triclinic space group P-1 with a = 7.9061(5) Å, b = 12.412(1) Å, c = 13.7005(8) Å, α = 105.021(6)°, β = 106.744(5)°, γ = 91.749(5)°, and Z = 2 molecules per unit cell. Also, we have found π-π interactions and classic and non-classic H-bonds in the crystal structure by using Hirshfeld surface analysis. In the speciation studies, the complex has dissociated in protonated sunitinib and chlorocomplex of copper(II), according to 1HNMR, EPR, UV-vis and conductimetric analysis. Molecular docking of the complex in both, ATP binding site and allosteric site of VEGFR2 have shown no improvement in comparison to the free ligand. Besides, cytotoxicity assay on HepG2 cell line shows similar activity for complex and ligand in the range between 1–25 μM supporting the data obtained from studies in solution.


2021 ◽  
Author(s):  
Kyle Orritt ◽  
Juliette Newell ◽  
Lipeng Feng ◽  
Thomas Germe ◽  
Lauren Abbott ◽  
...  

By 2050 it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, costing the world economy $100 trillion. Clearly, strategies to address this problem are required as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy, as this site is distinct from the fluoroquinolone-DNA site binding site. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by the published thiophene allosteric inhibitor. This series was evaluated in vitro against E. coli DNA gyrase, exhibiting IC50 values in the low micromolar range. The structure-activity relationship reported herein suggests insights to further exploit this allosteric site, offering a pathway to overcome fluoroquinolone resistance.


2021 ◽  
Vol 8 (1) ◽  
pp. 23-31
Author(s):  
Jefrin Ahmed ◽  
Judith Mary Lamo ◽  
Baphilinia Jones Mylliemngap

Protein kinases are key regulators of cell function that constitute one of the largest and most functionally diverse gene families. By adding phosphate groups to substrate proteins, they direct the activity, localization and overall function of many proteins, and serve to orchestrate the activity of almost all cellular processes. The main protein kinases consist of protein kinase A (PKA), protein kinase B (PKB), and protein kinase C (PKC) and are distinguished from each other by the different intracellular second messengers involved in their regulation and by the selective substrates they use. They all have a binding site for Mg2+-ATP (phosphate donor) and for substrate protein as well as various regulatory sites. We formulated to compare the binding capacity of protein kinases at the active site to allosteric sites. By comparing the active site and allosteric site of the protein kinases – A, B and C, using molecular docking it was found that in most of the cases the binding energy is high when an inhibitor binds to an active site as compared to the allosteric site. This comparison gave us an understanding of the interaction and inhibition of compounds to protein kinases in order to inhibit the activity of protein kinase A, B and C. It was concluded that for inhibiting the protein kinase function such as cell division and proliferation, binding of inhibitor to the allosteric site will be more effective.


2021 ◽  
Author(s):  
Mei Dang ◽  
Jianxing Song

Dengue NS2B-NS3 protease existing in equilibrium between the active and inactive forms is essential for virus replication, thus representing a key drug target. Here Myricetin, a plant flavonoid, was characterized to non-competitively inhibit Dengue protease. Further NMR study identified the protease residues perturbed by binding to Myricetin, which were utilized to construct the Myricetin-protease complexes. Strikingly, in the active form Myricetin binds a new allosteric site (AS2) far away from the active site pocket and allosteric site (AS1) for binding Curcumin, while in the inactive form it binds both AS1 and AS2. To decipher the mechanism for the allosteric inhibition by Myricetin, we conducted molecular dynamics (MD) simulations on different forms of Dengue NS2B-NS3 protease. Unexpectedly, the binding of Myricetin to AS2 is sufficient to disrupt the active conformation by displacing the characteristic NS2B C-terminal b- hairpin from the active site pocket. By contrast, the binding of Myricetin to AS1 and AS2 results in locking the inactive conformation. Therefore Myricetin represents the first small molecule which allosterically inhibits Dengue protease by both disrupting the active conformation and locking the inactive conformation. The results enforce the notion that a global allosteric network exists in Dengue NS2B-NS3 protease, which is susceptible to allosteric inhibition by small molecules such as Myricetin and Curcumin. As Myricetin has been extensively used as a food additive, it might be directly utilized to fight the Dengue infections and as a promising starting for further design of potent allosteric inhibitors.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7433
Author(s):  
Md Yousof Ali ◽  
Susoma Jannat ◽  
Hyun-Ah Jung ◽  
Jae-Sue Choi

In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.


Sign in / Sign up

Export Citation Format

Share Document