scholarly journals Lrfn2-mutant mice display suppressed synaptic plasticity and inhibitory synapse development and abnormal social communication and startle response

2018 ◽  
Author(s):  
Yan Li ◽  
Ryunhee Kim ◽  
Yi Sul Cho ◽  
Doyoun Kim ◽  
Kyungdeok Kim ◽  
...  

AbstractSALM1, also known as LRFN2, is a PSD-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression is detected in both glutamatergic and GABAergic neurons, and Lrfn2-/- CA1 pyramidal neurons show decreases in the density of inhibitory synapses and frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers, and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.Significance StatementSynaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN family of synaptic adhesion proteins consists of five known members whose in vivo functions are largely unknown. Here we characterized mice lacking SALM1/LRFN2 (SALM1 knockout) known to associate with NMDA receptors and found that these mice showed altered NMDA receptor-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 knockout pups showed suppressed ultrasonic vocalization upon separation from their mothers, and SALM1 knockout adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyung Ah Han ◽  
Jinhu Kim ◽  
Hyeonho Kim ◽  
Dongwook Kim ◽  
Dongseok Lim ◽  
...  

AbstractMembers of the Slitrk (Slit- and Trk-like protein) family of synaptic cell-adhesion molecules control excitatory and inhibitory synapse development through isoform-dependent extracellular interactions with leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs). However, how Slitrks participate in activation of intracellular signaling pathways in postsynaptic neurons remains largely unknown. Here we report that, among the six members of the Slitrk family, only Slitrk2 directly interacts with the PDZ domain-containing excitatory scaffolds, PSD-95 and Shank3. The interaction of Slitrk2 with PDZ proteins is mediated by the cytoplasmic COOH-terminal PDZ domain-binding motif (Ile-Ser-Glu-Leu), which is not found in other Slitrks. Mapping analyses further revealed that a single PDZ domain of Shank3 is responsible for binding to Slitrk2. Slitrk2 forms in vivo complexes with membrane-associated guanylate kinase (MAGUK) family proteins in addition to PSD-95 and Shank3. Intriguingly, in addition to its role in synaptic targeting in cultured hippocampal neurons, the PDZ domain-binding motif of Slitrk2 is required for Slitrk2 promotion of excitatory synapse formation, transmission, and spine development in the CA1 hippocampal region. Collectively, our data suggest a new molecular mechanism for conferring isoform-specific regulatory actions of the Slitrk family in orchestrating intracellular signal transduction pathways in postsynaptic neurons.


2013 ◽  
Vol 200 (3) ◽  
pp. 321-336 ◽  
Author(s):  
Katherine L. Pettem ◽  
Daisaku Yokomaku ◽  
Hideto Takahashi ◽  
Yuan Ge ◽  
Ann Marie Craig

Rare variants in MDGAs (MAM domain–containing glycosylphosphatidylinositol anchors), including multiple protein-truncating deletions, are linked to autism and schizophrenia, but the function of these genes is poorly understood. Here, we show that MDGA1 and MDGA2 bound to neuroligin-2 inhibitory synapse–organizing protein, also implicated in neurodevelopmental disorders. MDGA1 inhibited the synapse-promoting activity of neuroligin-2, without altering neuroligin-2 surface trafficking, by inhibiting interaction of neuroligin-2 with neurexin. MDGA binding and suppression of synaptogenic activity was selective for neuroligin-2 and not neuroligin-1 excitatory synapse organizer. Overexpression of MDGA1 in cultured rat hippocampal neurons reduced inhibitory synapse density without altering excitatory synapse density. Furthermore, RNAi-mediated knockdown of MDGA1 selectively increased inhibitory but not excitatory synapse density. These results identify MDGA1 as one of few identified negative regulators of synapse development with a unique selectivity for inhibitory synapses. These results also place MDGAs in the neurexin–neuroligin synaptic pathway implicated in neurodevelopmental disorders and support the idea that an imbalance between inhibitory and excitatory synapses may contribute to these disorders.


STEMedicine ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. e113
Author(s):  
Qian Ding ◽  
Qian Yu ◽  
Lei Tao ◽  
Yifei Guo ◽  
Juan Zhao ◽  
...  

Synaptic impairment results in cognitive dysfunction of Alzheimer’s disease (AD). As a plant extract, it is found that DL-3-n-butylphthalide (L-NBP) rescues abnormal cognitive behaviors in AD animals. However, the regulatory effects of L-NBP on synaptic plasticity remains unclear. APP/PS1 mice at 12 months old received oral L-NBP treatment for 12 weeks. A water maze test assessed cognitive performances. In vitro patch-clamp recordings and in vivo field potential recordings were performed to evaluate synaptic plasticity. The protein expression of AMPA receptor subunits (GluR1 and GluR2) and NMDA receptor subunits (NR1, NR2A, and NR2B) was examined by Western blot. In addition, glutaminase activity and glutamate level in the hippocampus were measured by colorimetry to evaluate presynaptic glutamate release. L-NBP treatment could significantly improve learning and memory ability, upregulate NR2A and NR2B protein expressions, increase glutaminase activity and glutamate level in the hippocampus, and attenuate synaptic impairment transmission in the AD mice. L-NPB plays a beneficial role in AD mice by regulating NMDA receptor subunits’ expression and regulating presynaptic glutamate release.


2015 ◽  
Vol 18 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Yong Zhang ◽  
Robert H Cudmore ◽  
Da-Ting Lin ◽  
David J Linden ◽  
Richard L Huganir

2020 ◽  
Author(s):  
Jordan S. Farrell ◽  
Roberto Colangeli ◽  
Barna Dudok ◽  
Marshal D. Wolff ◽  
Sarah L. Nguyen ◽  
...  

AbstractLong-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document