scholarly journals Microstructural Integrity of White Matter Moderates an Association Between Childhood Adversity and Adult Trait Anger

2018 ◽  
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Tracy C. d’Arbeloff ◽  
Annchen R. Knodt ◽  
Spenser R. Radtke ◽  
...  

AbstractAmongst a number of negative life sequelae associated with childhood adversity is the later expression of a higher dispositional tendency to experience anger and frustration to a wide range of situations (i.e., trait anger). We recently reported that an association between childhood adversity and trait anger is moderated by individual differences in both threat-related amygdala activity and executive control-related dorsolateral prefrontal cortex (dlPFC) activity, wherein individuals with relatively low amygdala and high dlPFC activity do not express higher trait anger even when having experienced childhood adversity. Here, we examine possible structural correlates of this functional dynamic using diffusion magnetic resonance imaging data from 647 young adult men and women volunteers. Specifically, we tested whether the degree of white matter microstructural integrity as indexed by fractional anisotropy modulated the association between childhood adversity and trait anger. Our analyses revealed that higher microstructural integrity of multiple pathways was associated with an attenuated link between childhood adversity and adult trait anger. Amongst these pathways was the uncinate fasciculus, which not only provides a major anatomical link between the amygdala and prefrontal cortex but also is associated with individual differences in regulating negative emotion through top-down cognitive reappraisal. These findings suggest that higher microstructural integrity of distributed white matter pathways including but not limited to the uncinate fasciculus may represent an anatomical foundation serving to buffer against the expression of childhood adversity as later trait anger, which is itself associated with multiple negative health outcomes.

2019 ◽  
Vol 45 (3) ◽  
pp. 310-318 ◽  
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Tracy C. d'Arbeloff ◽  
Annchen R. Knodt ◽  
Spenser R. Radtke ◽  
...  

2016 ◽  
Vol 46 (6) ◽  
pp. 1225-1238 ◽  
Author(s):  
H.-L. Chiang ◽  
Y.-J. Chen ◽  
C.-Y. Shang ◽  
W.-Y. I. Tseng ◽  
S. S.-F. Gau

BackgroundThe relationship between white-matter tracts and executive functions (EF) in attention deficit hyperactivity disorder (ADHD) has not been well studied and previous studies mainly focused on frontostriatal (FS) tracts. The authors explored the microstructural property of several fibre tracts hypothesized to be involved in EF, to correlate their microstructural property with EF, and to explore whether such associations differ between ADHD and typically developing (TD) youths.MethodWe assessed 45 youths with ADHD and 45 individually matched TD youths with a computerized test battery for multiple dimensions of EF. From magnetic resonance imaging, FS tract, superior longitudinal fasciculus (SLF), arcuate fasciculus (AF) and cingulum bundle (CB) were reconstructed by diffusion spectrum imaging tractography. The generalized fractional anisotropy (GFA) values of white-matter tracts were computed to present microstructural property of each tract.ResultsWe found lower GFA in the left FS tract, left SLF, left AF and right CB, and poorer performance in set-shifting, sustained attention, cognitive inhibition and visuospatial planning in ADHD than TD. The ADHD and TD groups demonstrated different association patterns between EF and fibre tract microstructural property. Most of the EF were associated with microstructural integrity of the FS tract and CB in TD youths, while with that of the FS tract, SLF and AF in youths with ADHD.ConclusionsOur findings support that the SLF, AF and CB also involve in a wide range of EF and that the main fibre tracts involved in EF are different in youths with ADHD.


2017 ◽  
Vol 12 (2) ◽  
pp. 449-458 ◽  
Author(s):  
Simon McCarthy-Jones ◽  
◽  
Lena K. L. Oestreich ◽  
Amanda E. Lyall ◽  
Zora Kikinis ◽  
...  

2020 ◽  
Vol 30 (12) ◽  
pp. 6152-6168
Author(s):  
Rebecca L Stephens ◽  
Benjamin W Langworthy ◽  
Sarah J Short ◽  
Jessica B Girault ◽  
Martin A Styner ◽  
...  

Abstract Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left–right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods.


2017 ◽  
Author(s):  
Yin Wang ◽  
Athanasia Metoki ◽  
Kylie H. Alm ◽  
Ingrid R. Olson

AbstractThere is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the “social brain”. Social neuroscience has traditionally focused its attention on functional response properties of these gray matter networks and neglected the vital role of white matter (WM) connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to the research on three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of WM pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion imaging data collection and analysis, and offer new directions for future research.AbbreviationsACCanterior cingulate cortexADaxial diffusivityAFarcuate fasciculusAIanterior insulaALSamyotrophic lateral sclerosisAMGamygdalaASDautism spectrum disordersATLanterior temporal lobeATRanterior thalamic radiationCCcorpus callosumCINGcingulum bundleCSTcortico-spinal tractDESdirect electrical stimulationdMPFCdorsal medial prefrontal cortexdMRIdiffusion-weighted MRIDPdevelopmental prosopagnosiaDTIdiffusion tensor imagingFAfractional anisotropyFFAfusiform face areaIFGinferior frontal gyrusIFOFinferior fronto-occipital fasciculusILFinferior longitudinal fasciculusIPLinferior parietal lobeMCImild cognitive impairmentMDmean diffusivityMPFCmedial prefrontal cortexMSmultiple sclerosisOFAoccipital face areaOFCorbitofrontal cortex face patchPCCposterior cingulate cortexPDParkinson’s diseasePPprogressive prosopagnosiaPreCprecuneusRDradial diffusivityROIregion-of-interestsMRIstructural MRISTSsuperior temporal sulcusTBSStract-based spatial statisticsToMTheory of MindTPJtemporo-parietal junctionUFuncinate fasciculusVBMvoxel based morphometryvMPFCventral medial prefrontal cortexWMwhite matter


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ignacio Osorio ◽  
Miguel Guevara ◽  
Danilo Bonometti ◽  
Diego Carrasco ◽  
Maxime Descoteaux ◽  
...  

Abstract Background The visualization and analysis of brain data such as white matter diffusion tractography and magnetic resonance imaging (MRI) volumes is commonly used by neuro-specialist and researchers to help the understanding of brain structure, functionality and connectivity. As mobile devices are widely used among users and their technology shows a continuous improvement in performance, different types of applications have been designed to help users in different work areas. Results We present, ABrainVis, an Android mobile tool that allows users to visualize different types of brain images, such as white matter diffusion tractographies, represented as fibers in 3D, segmented fiber bundles, MRI 3D images as rendered volumes and slices, and meshes. The tool enables users to choose and combine different types of brain imaging data to provide visual anatomical context for specific visualization needs. ABrainVis provides high performance over a wide range of Android devices, including tablets and cell phones using medium and large tractography datasets. Interesting visualizations including brain tumors and arteries, along with fiber, are given as examples of case studies using ABrainVis. Conclusions The functionality, flexibility and performance of ABrainVis tool introduce an improvement in user experience enabling neurophysicians and neuroscientists fast visualization of large tractography datasets, as well as the ability to incorporate other brain imaging data such as MRI volumes and meshes, adding anatomical contextual information.


2015 ◽  
Vol 38 (5) ◽  
pp. E3 ◽  
Author(s):  
Christopher M. Bonfield ◽  
Lesley M. Foley ◽  
Shinjini Kundu ◽  
Wendy Fellows-Mayle ◽  
T. Kevin Hitchens ◽  
...  

OBJECT Craniosynostosis is a condition in which one or more of the calvarial sutures fuses prematurely. In addition to the cosmetic ramifications attributable to premature suture fusion, aberrations in neurophysiological parameters are seen, which may result in more significant damage. This work examines the microstructural integrity of white matter, using diffusion tensor imaging (DTI) in a homogeneous strain of rabbits with simple, familial coronal suture synostosis before and after surgical correction. METHODS After diagnosis, rabbits were assigned to different groups: wild-type (WT), rabbits with early-onset complete fusion of the coronal suture (BC), and rabbits that had undergone surgical correction with suturectomy (BC-SU) at 10 days of age. Fixed rabbit heads were imaged at 12, 25, or 42 days of life using a 4.7-T, 40-cm bore Avance scanner with a 7.2-cm radiofrequency coil. For DTI, a 3D spin echo sequence was used with a diffusion gradient (b = 2000 sec/mm2) applied in 6 directions. RESULTS As age increased from 12 to 42 days, the DTI differences between WT and BC groups became more pronounced (p < 0.05, 1-way ANOVA), especially in the corpus callosum, cingulum, and fimbriae. Suturectomy resulted in rabbits with no significant differences compared with WT animals, as assessed by DTI of white matter tracts. Also, it was possible to predict to which group an animal belonged (WT, BC, and BC-SU) with high accuracy based on imaging data alone using a linear support vector machine classifier. The ability to predict to which group the animal belonged improved as the age of the animal increased (71% accurate at 12 days and 100% accurate at 42 days). CONCLUSIONS Craniosynostosis results in characteristic changes of major white matter tracts, with differences becoming more apparent as the age of the rabbits increases. Early suturectomy (at 10 days of life) appears to mitigate these differences.


Sign in / Sign up

Export Citation Format

Share Document