scholarly journals Acute-phase CD4+ T cell responses targeting invariant viral regions are associated with control of live-attenuated simian immunodeficiency virus

2018 ◽  
Author(s):  
Matthew S. Sutton ◽  
Amy Ellis-Connell ◽  
Ryan V. Moriarty ◽  
Alexis J. Balgeman ◽  
Dane Gellerup ◽  
...  

AbstractWe manipulated SIVmac239Δnef, a model of MHC-independent viral control, to evaluate characteristics of effective cellular responses mounted by Mauritian cynomolgus macaques (MCMs) who express the M3 MHC haplotype that has been associated with poor control of pathogenic SIV. We created SIVΔnef-8x to test the hypothesis that effective SIV-specific T cell responses targeting invariant viral regions can emerge in the absence of immunodominant CD8+ T cell responses targeting variable epitopes, and that control is achievable in individuals lacking known protective MHC alleles. Full proteome IFNγ ELISPOT assays identified six newly targeted immunogenic regions following SIVΔnef-8x infection of M3/M3 MCMs. We deep sequenced circulating virus and found that four of the six newly targeted regions rarely accumulated mutations. Six animals infected with SIVΔnef-8x targeted at least one of the four invariant regions and had a lower set point viral load compared to two animals that did not target any invariant regions. We found that MHC class II molecules restricted all four of the invariant peptide regions, while the two variable regions were restricted by MHC class I molecules. Therefore, in the absence of immunodominant CD8+ T cell responses that target variable regions during SIVmac239Δnef infection, individuals without ‘protective’ MHC alleles developed predominantly CD4+ T cell responses specific for invariant regions that may improve control of virus replication. Our results provide some evidence that antiviral CD4+ T cells during acute SIV infection can contribute to effective viral control and should be considered in strategies to combat HIV infection.ImportanceStudies defining effective cellular immune responses to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have largely focused on a rare population that express specific MHC class I alleles and control virus replication in the absence of antiretroviral treatment. This leaves in question whether similar effective immune responses can be achieved in the larger population. The majority of HIV-infected individuals mount CD8+ T cell responses that target variable viral regions that accumulate high-frequency escape mutations. Limiting T cell responses to these variable regions and targeting invariant viral regions, similar to observations in rare ‘elite controllers’, may provide an ideal strategy for the development of effective T cell responses in individuals with diverse MHC genetics. Therefore, it is paramount to determine whether T cell responses can be redirected towards invariant viral regions in individuals without ‘protective’ MHC alleles and if these responses improve control of virus replication.

2018 ◽  
Vol 92 (21) ◽  
Author(s):  
Matthew S. Sutton ◽  
Amy Ellis-Connell ◽  
Ryan V. Moriarty ◽  
Alexis J. Balgeman ◽  
Dane Gellerup ◽  
...  

ABSTRACTWe manipulated SIVmac239Δnef, a model of major histocompatibility complex (MHC)-independent viral control, to evaluate characteristics of effective cellular responses mounted by Mauritian cynomolgus macaques (MCMs) that express the M3 MHC haplotype, which has been associated with poor control of pathogenic simian immunodeficiency virus (SIV). We created SIVΔnef-8x to test the hypothesis that effective SIV-specific T cell responses targeting invariant viral regions can emerge in the absence of immunodominant CD8+T cell responses targeting variable epitopes and that control is achievable in individuals lacking known “protective” MHC alleles. Full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays identified six newly targeted immunogenic regions following SIVΔnef-8x infection of M3/M3 MCMs. We deep sequenced circulating virus and found that four of the six newly targeted regions rarely accumulated mutations. Six animals infected with SIVΔnef-8x had T cell responses that targeted at least one of the four invariant regions and had a lower set point viral load than two animals that did not have T cell responses that targeted any invariant regions. We found that MHC class II molecules restricted all four of the invariant peptide regions, while the two variable regions were restricted by MHC class I molecules. Therefore, in the absence of immunodominant CD8+T cell responses that target variable regions during SIVmac239Δnef infection, individuals without protective MHC alleles developed predominantly CD4+T cell responses specific for invariant regions that may improve control of virus replication. Our results provide some evidence that antiviral CD4+T cells during acute SIV infection can contribute to effective viral control and should be considered in strategies to combat HIV infection.IMPORTANCEStudies defining effective cellular immune responses to human immunodeficiency virus (HIV) and SIV have largely focused on a rare population that express specific MHC class I alleles and control virus replication in the absence of antiretroviral treatment. This leaves in question whether similar effective immune responses can be achieved in the larger population. The majority of HIV-infected individuals mount CD8+T cell responses that target variable viral regions that accumulate high-frequency escape mutations. Limiting T cell responses to these variable regions and targeting invariant viral regions, similar to observations in rare “elite controllers,” may provide an ideal strategy for the development of effective T cell responses in individuals with diverse MHC genetics. Therefore, it is of paramount importance to determine whether T cell responses can be redirected toward invariant viral regions in individuals without protective MHC alleles and if these responses improve control of virus replication.


2007 ◽  
Vol 81 (24) ◽  
pp. 13809-13815 ◽  
Author(s):  
Christof Geldmacher ◽  
Clive Gray ◽  
Martha Nason ◽  
Jeffrey R. Currier ◽  
Antelmo Haule ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-specific CD8 T-cell responses targeting products encoded within the Gag open reading frame have frequently been associated with better viral control and disease outcome during the chronic phase of HIV infection. To further clarify this relationship, we have studied the dynamics of Gag-specific CD8 T-cell responses in relation to plasma viral load and time since infection in 33 chronically infected subjects over a 9-month period. High baseline viral loads were associated with a net loss of breadth (P < 0.001) and a decrease in the total magnitude of the Gag-specific T-cell response in general (P = 0.03). Most importantly, the baseline viral load predicted the subsequent change in the breadth of Gag recognition over time (P < 0.0001, r 2 = 0.41). Compared to maintained responses, lost responses were low in magnitude (P < 0.0001) and subdominant in the hierarchy of Gag-specific responses. The present study indicates that chronic exposure of the human immune system to high levels of HIV viremia is a determinant of virus-specific CD8 T-cell loss.


2012 ◽  
Vol 86 (14) ◽  
pp. 7596-7604 ◽  
Author(s):  
M. L. Budde ◽  
J. M. Greene ◽  
E. N. Chin ◽  
A. J. Ericsen ◽  
M. Scarlotta ◽  
...  

2006 ◽  
Vol 81 (1) ◽  
pp. 434-438 ◽  
Author(s):  
Cheryl L. Day ◽  
Photini Kiepiela ◽  
Alasdair J. Leslie ◽  
Mary van der Stok ◽  
Kriebashne Nair ◽  
...  

ABSTRACT The relationship between the function of human immunodeficiency virus (HIV)-specific CD8 T-cell responses and viral load has not been defined. In this study, we used a panel of major histocompatibility complex class I tetramers to examine responses to frequently targeted CD8 T-cell epitopes in a large cohort of antiretroviral-therapy-naïve HIV type 1 clade C virus-infected persons in KwaZulu Natal, South Africa. In terms of effector functions of proliferation, cytokine production, and degranulation, only proliferation showed a significant correlation with viral load. This robust inverse relationship provides an important functional correlate of viral control relevant to both vaccine design and evaluation.


2019 ◽  
Vol 220 (10) ◽  
pp. 1620-1628 ◽  
Author(s):  
Sushma Boppana ◽  
Sarah Sterrett ◽  
Jacob Files ◽  
Kai Qin ◽  
Andrew Fiore-Gartland ◽  
...  

Abstract HLA-I–associated human immunodeficiency virus (HIV) adaptation is known to negatively affect disease progression and CD8 T-cell responses. We aimed to assess how HLA-I–associated adaptation affects HIV vaccine–induced CD8 T-cell responses in 2 past vaccine efficacy trials. We found that vaccine-encoded adapted epitopes were less immunogenic than vaccine-encoded nonadapted epitopes, and adapted epitope-specific responses were less polyfunctional than nonadapted epitope-specific responses. Along those lines, vaccine recipients with higher HLA-I adaptation to the Gag vaccine insert mounted less polyfunctional CD8 T-cell responses at the protein level. Breadth of response, which correlated with viral control in recipients who became infected, is also dampened by HLA-I adaptation. These findings suggest that HLA-I–associated adaptation is an important consideration for strategies aiming to induce robust CD8 T-cell responses.


2004 ◽  
Vol 78 (2) ◽  
pp. 630-641 ◽  
Author(s):  
R. Draenert ◽  
C. L. Verrill ◽  
Y. Tang ◽  
T. M. Allen ◽  
A. G. Wurcel ◽  
...  

ABSTRACT CD8 T-cell responses are thought to be crucial for control of viremia in human immunodeficiency virus (HIV) infection but ultimately fail to control viremia in most infected persons. Studies in acute infection have demonstrated strong CD8-mediated selection pressure and evolution of mutations conferring escape from recognition, but the ability of CD8 T-cell responses that persist in late-stage infection to recognize viruses present in vivo has not been determined. Therefore, we studied 24 subjects with advanced HIV disease (median viral load = 142,000 copies/ml; median CD4 count = 71/μl) and determined HIV-1-specific CD8 T-cell responses to all expressed viral proteins using overlapping peptides by gamma interferon Elispot assay. Chronic-stage virus was sequenced to evaluate autologous sequences within Gag epitopes, and functional avidity of detected responses was determined. In these subjects, the median number of epitopic regions targeted was 13 (range, 2 to 39) and the median cumulative magnitude of CD8 T-cell responses was 5,760 spot-forming cells/106 peripheral blood mononuclear cells (range, 185 to 24,700). On average six (range, one to 8) proteins were targeted. For 89% of evaluated CD8 T-cell responses, the autologous viral sequence was predicted to be well recognized by these responses and the majority of analyzed optimal epitopes were recognized with medium to high functional avidity by the contemporary CD8 T cells. Withdrawal of antigen by highly active antiretroviral therapy led to a significant decline both in breadth (P = 0.032) and magnitude (P = 0.0098) of these CD8 T-cell responses, providing further evidence that these responses had been driven by recognition of autologous virus. These results indicate that strong, broadly directed, and high-avidity gamma-interferon-positive CD8 T-cells directed at autologous virus persist in late disease stages, and the absence of mutations within viral epitopes indicates a lack of strong selection pressure mediated by these responses. These data imply functional impairment of CD8 T-cell responses in late-stage infection that may not be reflected by gamma interferon-based screening techniques.


2004 ◽  
Vol 78 (7) ◽  
pp. 3233-3243 ◽  
Author(s):  
Agatha Masemola ◽  
Tumelo Mashishi ◽  
Greg Khoury ◽  
Phineas Mohube ◽  
Pauline Mokgotho ◽  
...  

ABSTRACT An understanding of the relationship between the breadth and magnitude of T-cell epitope responses and viral loads is important for the design of effective vaccines. For this study, we screened a cohort of 46 subtype C human immunodeficiency virus type 1 (HIV-1)-infected individuals for T-cell responses against a panel of peptides corresponding to the complete subtype C genome. We used a gamma interferon ELISPOT assay to explore the hypothesis that patterns of T-cell responses across the expressed HIV-1 genome correlate with viral control. The estimated median time from seroconversion to response for the cohort was 13 months, and the order of cumulative T-cell responses against HIV proteins was as follows: Nef > Gag > Pol > Env > Vif > Rev > Vpr > Tat > Vpu. Nef was the most intensely targeted protein, with 97.5% of the epitopes being clustered within 119 amino acids, constituting almost one-third of the responses across the expressed genome. The second most targeted region was p24, comprising 17% of the responses. There was no correlation between viral load and the breadth of responses, but there was a weak positive correlation (r = 0.297; P = 0.034) between viral load and the total magnitude of responses, implying that the magnitude of T-cell recognition did not contribute to viral control. When hierarchical patterns of recognition were correlated with the viral load, preferential targeting of Gag was significantly (r = 0.445; P = 0.0025) associated with viral control. These data suggest that preferential targeting of Gag epitopes, rather than the breadth or magnitude of the response across the genome, may be an important marker of immune efficacy. These data have significance for the design of vaccines and for interpretation of vaccine-induced responses.


Vaccine ◽  
2012 ◽  
Vol 30 (49) ◽  
pp. 6997-7004 ◽  
Author(s):  
Krista H. Gladney ◽  
Julia Pohling ◽  
Natasha A. Hollett ◽  
Katrin Zipperlen ◽  
Maureen E. Gallant ◽  
...  

2019 ◽  
Vol 222 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Archana Thomas ◽  
Erika Hammarlund ◽  
Lina Gao ◽  
Susan Holman ◽  
Katherine G Michel ◽  
...  

Abstract Background It is unclear whether human immunodeficiency virus (HIV) infection results in permanent loss of T-cell memory or if it affects preexisting antibodies to childhood vaccinations or infections. Methods We conducted a matched cohort study involving 50 pairs of HIV-infected and HIV-uninfected women. Total memory T-cell responses were measured after anti-CD3 or vaccinia virus (VV) stimulation to measure T cells elicited after childhood smallpox vaccination. VV-specific antibodies were measured by means of enzyme-linked immunosorbent assay (ELISA). Results There was no difference between HIV-infected and HIV-uninfected study participants in terms of CD4+ T-cell responses after anti-CD3 stimulation (P = .19) although HIV-infected participants had significantly higher CD8+ T-cell responses (P = .03). In contrast, there was a significant loss in VV-specific CD4+ T-cell memory among HIV-infected participants (P = .04) whereas antiviral CD8+ T-cell memory remained intact (P &gt; .99). VV-specific antibodies were maintained indefinitely among HIV-uninfected participants (half-life, infinity; 95% confidence interval, 309 years to infinity) but declined rapidly among HIV-infected participants (half-life; 39 years; 24–108 years; P = .001). Conclusions Despite antiretroviral therapy–associated improvement in CD4+ T-cell counts (nadir, &lt;200/μL; &gt;350/μL after antiretroviral therapy), antigen-specific CD4+ T-cell memory to vaccinations or infections that occurred before HIV infection did not recover after immune reconstitution, and a previously unrealized decline in preexisting antibody responses was observed.


Sign in / Sign up

Export Citation Format

Share Document