scholarly journals A deep learning approach to pattern recognition for short DNA sequences

2018 ◽  
Author(s):  
Akosua Busia ◽  
George E. Dahl ◽  
Clara Fannjiang ◽  
David H. Alexander ◽  
Elizabeth Dorfman ◽  
...  

AbstractMotivationInferring properties of biological sequences--such as determining the species-of-origin of a DNA sequence or the function of an amino-acid sequence--is a core task in many bioinformatics applications. These tasks are often solved using string-matching to map query sequences to labeled database sequences or via Hidden Markov Model-like pattern matching. In the current work we describe and assess an deep learning approach which trains a deep neural network (DNN) to predict database-derived labels directly from query sequences.ResultsWe demonstrate this DNN performs at state-of-the-art or above levels on a difficult, practically important problem: predicting species-of-origin from short reads of 16S ribosomal DNA. When trained on 16S sequences of over 13,000 distinct species, our DNN achieves read-level species classification accuracy within 2.0% of perfect memorization of training data, and produces more accurate genus-level assignments for reads from held-out species thank-mer, alignment, and taxonomic binning baselines. Moreover, our models exhibit greater robustness than these existing approaches to increasing noise in the query sequences. Finally, we show that these DNNs perform well on experimental 16S mock community dataset. Overall, our results constitute a first step towards our long-term goal of developing a general-purpose deep learning approach to predicting meaningful labels from short biological sequences.AvailabilityTensorFlow training code is available through GitHub (https://github.com/tensorflow/models/tree/master/research). Data in TensorFlow TFRecord format is available on Google Cloud Storage (gs://brain-genomics-public/research/seq2species/)[email protected] informationSupplementary data are available in a separate document.

2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2020 ◽  
Vol 36 (14) ◽  
pp. 4130-4136
Author(s):  
David J Burks ◽  
Rajeev K Azad

Abstract Motivation Alignment-free, stochastic models derived from k-mer distributions representing reference genome sequences have a rich history in the classification of DNA sequences. In particular, the variants of Markov models have previously been used extensively. Higher-order Markov models have been used with caution, perhaps sparingly, primarily because of the lack of enough training data and computational power. Advances in sequencing technology and computation have enabled exploitation of the predictive power of higher-order models. We, therefore, revisited higher-order Markov models and assessed their performance in classifying metagenomic sequences. Results Comparative assessment of higher-order models (HOMs, 9th order or higher) with interpolated Markov model, interpolated context model and lower-order models (8th order or lower) was performed on metagenomic datasets constructed using sequenced prokaryotic genomes. Our results show that HOMs outperform other models in classifying metagenomic fragments as short as 100 nt at all taxonomic ranks, and at lower ranks when the fragment size was increased to 250 nt. HOMs were also found to be significantly more accurate than local alignment which is widely relied upon for taxonomic classification of metagenomic sequences. A novel software implementation written in C++ performs classification faster than the existing Markovian metagenomic classifiers and can therefore be used as a standalone classifier or in conjunction with existing taxonomic classifiers for more robust classification of metagenomic sequences. Availability and implementation The software has been made available at https://github.com/djburks/SMM. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


2019 ◽  
Vol 35 (14) ◽  
pp. i269-i277 ◽  
Author(s):  
Ameni Trabelsi ◽  
Mohamed Chaabane ◽  
Asa Ben-Hur

Abstract Motivation Deep learning architectures have recently demonstrated their power in predicting DNA- and RNA-binding specificity. Existing methods fall into three classes: Some are based on convolutional neural networks (CNNs), others use recurrent neural networks (RNNs) and others rely on hybrid architectures combining CNNs and RNNs. However, based on existing studies the relative merit of the various architectures remains unclear. Results In this study we present a systematic exploration of deep learning architectures for predicting DNA- and RNA-binding specificity. For this purpose, we present deepRAM, an end-to-end deep learning tool that provides an implementation of a wide selection of architectures; its fully automatic model selection procedure allows us to perform a fair and unbiased comparison of deep learning architectures. We find that deeper more complex architectures provide a clear advantage with sufficient training data, and that hybrid CNN/RNN architectures outperform other methods in terms of accuracy. Our work provides guidelines that can assist the practitioner in choosing an appropriate network architecture, and provides insight on the difference between the models learned by convolutional and recurrent networks. In particular, we find that although recurrent networks improve model accuracy, this comes at the expense of a loss in the interpretability of the features learned by the model. Availability and implementation The source code for deepRAM is available at https://github.com/MedChaabane/deepRAM. Supplementary information Supplementary data are available at Bioinformatics online.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12363
Author(s):  
Paul M. Harrison

Compositionally-biased (CB) regions in biological sequences are enriched for a subset of sequence residue types. These can be shorter regions with a concentrated bias (i.e., those termed ‘low-complexity’), or longer regions that have a compositional skew. These regions comprise a prominent class of the uncharacterized ‘dark matter’ of the protein universe. Here, I report the latest version of the fLPS package for the annotation of CB regions, which includes added consideration of DNA sequences, to label the eight possible biased regions of DNA. In this version, the user is now able to restrict analysis to a specified subset of residue types, and also to filter for previously annotated domains to enable detection of discontinuous CB regions. A ‘thorough’ option has been added which enables the labelling of subtler biases, typically made from a skew for several residue types. In the output, protein CB regions are now labelled with bias classes reflecting the physico-chemical character of the biasing residues. The fLPS 2.0 package is available from: https://github.com/pmharrison/flps2 or in a Supplemental File of this paper.


2016 ◽  
Author(s):  
Genivaldo Gueiros Z. Silva ◽  
Bas E. Dutilh ◽  
Robert A. Edwards

ABSTRACTSummaryMetagenomics approaches rely on identifying the presence of organisms in the microbial community from a set of unknown DNA sequences. Sequence classification has valuable applications in multiple important areas of medical and environmental research. Here we introduce FOCUS2, an update of the previously published computational method FOCUS. FOCUS2 was tested with 10 simulated and 543 real metagenomes demonstrating that the program is more sensitive, faster, and more computationally efficient than existing methods.AvailabilityThe Python implementation is freely available at https://edwards.sdsu.edu/FOCUS2.Supplementary informationavailable at Bioinformatics online.


2021 ◽  
Author(s):  
Boqiao Lai ◽  
Sheng Qian ◽  
Hanwen Zhang ◽  
Siwei Zhang ◽  
Alena Kozlova ◽  
...  

AbstractDecoding the regulatory effects of non-coding variants is a key challenge in understanding the mechanisms of gene regulation as well as the genetics of common diseases. Recently, deep learning models have been introduced to predict genome-wide epigenomic profiles and effects of DNA variants, in various cellular contexts, but they were often trained in cell lines or bulk tissues that may not be related to phenotypes of interest. This is particularly a challenge for neuropsychiatric disorders, since the most relevant cell and tissue types are often missing in the training data of such models.To address this issue, we introduce a deep transfer learning framework termed MetaChrom that takes advantage of both a reference dataset - an extensive compendium of publicly available epigenomic data, and epigenomic profiles of cell types related to specific phenotypes of interest. We trained and evaluated our model on a comprehensive set of epigenomic profiles from fetal and adult brain, and cellular models representing early neurodevelopment. MetaChrom predicts these epigenomic features with much higher accuracy than previous methods, and than models without the use of reference epigenomic data for transfer learning. Using experimentally determined regulatory variants from iPS cell-derived neurons, we show that MetaChrom predicts functional variants more accurately than existing non-coding variant scoring tools. By combining genome-wide association study (GWAS) data with MetaChrom predictions, we prioritized 31 SNPs for Schizophrenia (SCZ). These candidate SNPs suggest potential risk genes of SCZ and the biological contexts where they act.In summary, MetaChrom is a general transfer learning framework that can be applied to the study of regulatory functions of DNA sequences and variants in any disease-related cell or tissue types. The software tool is available at https://github.com/bl-2633/MetaChrom and a prediction web server is accessible at https://metachrom.ttic.edu/.


2021 ◽  
Author(s):  
Geoffrey F. Schau ◽  
Hassan Ghani ◽  
Erik A. Burlingame ◽  
Guillaume Thibault ◽  
Joe W. Gray ◽  
...  

AbstractAccurate diagnosis of metastatic cancer is essential for prescribing optimal control strategies to halt further spread of metastasizing disease. While pathological inspection aided by immunohistochemistry staining provides a valuable gold standard for clinical diagnostics, deep learning methods have emerged as powerful tools for identifying clinically relevant features of whole slide histology relevant to a tumor’s metastatic origin. Although deep learning models require significant training data to learn effectively, transfer learning paradigms provide mechanisms to circumvent limited training data by first training a model on related data prior to fine-tuning on smaller data sets of interest. In this work we propose a transfer learning approach that trains a convolutional neural network to infer the metastatic origin of tumor tissue from whole slide images of hematoxylin and eosin (H&E) stained tissue sections and illustrate the advantages of pre-training network on whole slide images of primary tumor morphology. We further characterize statistical dissimilarity between primary and metastatic tumors of various indications on patch-level images to highlight limitations of our indication-specific transfer learning approach. Using a primary-to-metastatic transfer learning approach, we achieved mean class-specific areas under receiver operator characteristics curve (AUROC) of 0.779, which outperformed comparable models trained on only images of primary tumor (mean AUROC of 0.691) or trained on only images of metastatic tumor (mean AUROC of 0.675), supporting the use of large scale primary tumor imaging data in developing computer vision models to characterize metastatic origin of tumor lesions.


Author(s):  
Hai Yang ◽  
Rui Chen ◽  
Dongdong Li ◽  
Zhe Wang

Abstract Motivation The discovery of cancer subtyping can help explore cancer pathogenesis, determine clinical actionability in treatment, and improve patients' survival rates. However, due to the diversity and complexity of multi-omics data, it is still challenging to develop integrated clustering algorithms for tumor molecular subtyping. Results We propose Subtype-GAN, a deep adversarial learning approach based on the multiple-input multiple-output neural network to model the complex omics data accurately. With the latent variables extracted from the neural network, Subtype-GAN uses consensus clustering and the Gaussian Mixture model to identify tumor samples' molecular subtypes. Compared with other state-of-the-art subtyping approaches, Subtype-GAN achieved outstanding performance on the benchmark data sets consisting of ∼4,000 TCGA tumors from 10 types of cancer. We found that on the comparison data set, the clustering scheme of Subtype-GAN is not always similar to that of the deep learning method AE but is identical to that of NEMO, MCCA, VAE, and other excellent approaches. Finally, we applied Subtype-GAN to the BRCA data set and automatically obtained the number of subtypes and the subtype labels of 1031 BRCA tumors. Through the detailed analysis, we found that the identified subtypes are clinically meaningful and show distinct patterns in the feature space, demonstrating the practicality of Subtype-GAN. Availability The source codes, the clustering results of Subtype-GAN across the benchmark data sets are available at https://github.com/haiyang1986/Subtype-GAN. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document