scholarly journals The creation of sexual dimorphism in Drosophila gonad stem cell niches

2018 ◽  
Author(s):  
Nicole Camara ◽  
Cale Whitworth ◽  
Mark Van Doren

SUMMARYSex-specific development of the gonads is a key aspect of sexual dimorphism that is regulated by Doublesex/Mab3 Related Transcription Factors (DMRTs) in diverse animals species. We find that in mutants for Drosophila dsx, important components of the male and female gonad stem cell niches (hubs and terminal filaments/cap cells, respectively) still form. Initially, gonads in all dsx mutants (both XX and XY) initiate the male program of development, but later half of these gonads switch to form female stem cell niche structures. One individual can have both male-type and female-type gonad niches, however male and female niches are usually not observed in the same gonad, indicating that cells make a “group decision” about which program to follow. We conclude that dsx does not act in an instructive manner to regulate male vs. female niche formation, as these structures form in the absence of dsx function. Instead, dsx acts to “tip the balance” between the male or female programs, which are then executed independent of dsx. We show that bric a brac acts downstream of dsx to control the male vs. female niche decision. These results indicate that, in both flies and mammals, the sexual fate of the somatic gonad is remarkably plastic and is controlled by a combination of autonomous and non-autonomous cues.

2018 ◽  
Vol 20 (suppl_3) ◽  
pp. iii289-iii289
Author(s):  
V V V Hira ◽  
J R Wormer ◽  
H Kakar ◽  
B Breznik ◽  
B van der Swaan ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 539
Author(s):  
Vitaly Vodyanoy ◽  
Oleg Pustovyy ◽  
Ludmila Globa ◽  
Randy J. Kulesza ◽  
Iryna Sorokulova

Stem cells are nurtured and regulated by a specialized microenvironment known as stem cell niche. While the functions of the niches are well defined, their structure and location remain unclear. We have identified, in rat bone marrow, the seat of hematopoietic stem cells—extensively vascularized node-like compartments that fit the requirements for stem cell niche and that we called hemmules. Hemmules are round or oval structures of about one millimeter in diameter that are surrounded by a fine capsule, have afferent and efferent vessels, are filled with the extracellular matrix and mesenchymal, hematopoietic, endothelial stem cells, and contain cells of the megakaryocyte family, which are known for homeostatic quiescence and contribution to the bone marrow environment. We propose that hemmules are the long sought hematopoietic stem cell niches and that they are prototypical of stem cell niches in other organs.


2018 ◽  
Author(s):  
Denay Grégoire ◽  
Tichtinsky Gabrielle ◽  
Le Masson Marie ◽  
Chahtane Hicham ◽  
Huguet Sylvie ◽  
...  

AbstractPlants retain the ability to produce organs throughout their life by maintaining active stem cell niches called meristems. The shoot apical meristem (SAM) is responsible for the growth of aerial plant structures. In Arabidopsis thaliana, the SAM initially produces leaves during the vegetative phase and later flowers during reproductive development. In the early stages of floral initiation, a group of cells first emerges from the SAM to form a stereotypically organized meristematic structure on its flank. However, the molecular mechanisms underlying the acquisition of this specific meristematic organization remain elusive. We show here that the transcription factors LEAFY (LFY) and REVOLUTA (REV) control two partially redundant pathways controlling meristematic organization in early flower primordia. We found that LFY acts through the transcription factor REGULATOR OF AXILLARY MERISTEM1 (RAX1) and we provide mechanistic insights in how RAX1 allows meristem identity establishment in young flowers. Our work provides a molecular link between the processes of meristem formation and floral identity acquisition in the nascent flower.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kacy L Gordon ◽  
Jay W Zussman ◽  
Xin Li ◽  
Camille Miller ◽  
David R Sherwood

Stem cells reside in and rely upon their niche to maintain stemness but must balance self-renewal with the production of daughters that leave the niche to differentiate. We discovered a mechanism of stem cell niche exit in the canonical C. elegans distal tip cell (DTC) germ stem cell niche mediated by previously unobserved, thin, membranous protrusions of the adjacent somatic gonad cell pair (Sh1). A disproportionate number of germ cell divisions were observed at the DTC-Sh1 interface. Stem-like and differentiating cell fates segregated across this boundary. Spindles polarized, pairs of daughter cells oriented between the DTC and Sh1, and Sh1 grew over the Sh1-facing daughter. Impeding Sh1 growth by RNAi to cofilin and Arp2/3 perturbed the DTC-Sh1 interface, reduced germ cell proliferation, and shifted a differentiation marker. Because Sh1 membrane protrusions eluded detection for decades, it is possible that similar structures actively regulate niche exit in other systems.


FEBS Journal ◽  
2012 ◽  
Vol 279 (18) ◽  
pp. 3475-3487 ◽  
Author(s):  
Peter Buske ◽  
Jens Przybilla ◽  
Markus Loeffler ◽  
Norman Sachs ◽  
Toshiro Sato ◽  
...  

Author(s):  
Vitaly Vodyanoy ◽  
Oleg Pustovyy ◽  
Ludmila Globa ◽  
Randy J Kulesza Jr ◽  
Iryna Sorokulova

Stem cells are nurtured and regulated by a specialized microenvironment known as stem cell niche. While the functions of the niches are well defined, their structure and location remain unclear. We have identified in rat bone marrow, the seat of hematopoietic stem cells, extensively vascularized node-like compartments that fit the requirements for stem cell niche and which we called hemmules. Hemmules are round or oval structures of about one millimeter in diameter that are surrounded by a fine capsule, have afferent and efferent vessels, are filled with the extracellular matrix and mesenchymal, hematopoietic, endothelial stem cells, and contain cells of the megakaryocyte family, which are known for homeostatic quiescence and contribution to the bone marrow environment. We propose that hemmules are the long sought hematopoietic stem cell niches and that they are prototypical of stem cell niches in other organs.


Sign in / Sign up

Export Citation Format

Share Document